Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the ‘team brief’ at the start of the operating list across two sites. Waste was categorized into five categories: infectious, general, recycling, sharps, and linens. Each category was weighed at the end of each case using a digital weighing scale. At Site A (a tertiary orthopaedic hospital), pre-intervention data were collected for 16 total knee arthroplasy (TKA) and 15 total hip arthroplasty (THA) cases. Subsequently, for ten TKA and ten THA cases, an unscrubbed team member actively segregated waste in real-time into the correct streams. At Site B (a district general hospital), both pre- and post-intervention groups included ten TKA and ten THA cases. The intervention included reminding staff during the ‘team brief’ to segregate waste correctly.Aims
Methods
The interaction between surgical lighting and laminar airflow
is poorly understood. We undertook an experiment to identify any
effect contemporary surgical lights have on laminar flow and recommend
practical strategies to limit any negative effects. Neutrally buoyant bubbles were introduced into the surgical field
of a simulated setup for a routine total knee arthroplasty in a
laminar flow theatre. Patterns of airflow were observed and the
number of bubbles remaining above the surgical field over time identified.
Five different lighting configurations were assessed. Data were analysed
using simple linear regression after logarithmic transformation.Aims
Materials and Methods