The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).Aims
Methods
Aims. The primary aim of this study was to develop a reliable, effective radiological score to assess the healing of humeral shaft fractures, the Radiographic Union Score for HUmeral fractures (RUSHU). The secondary aim was to assess whether the six-week RUSHU was predictive of nonunion at six months after the injury. Patients and Methods. Initially, 20 patients with radiographs six weeks following a humeral shaft fracture were selected at random from a trauma database and scored by three observers, based on the Radiographic Union Scale for Tibial fractures system. After refinement of the RUSHU criteria, a second group of 60 patients with radiographs six weeks after injury, 40 with fractures that united and 20 with fractures that developed nonunion, were scored by two blinded observers. Results. After refinement, the interobserver intraclass correlation coefficient (ICC) was 0.79 (95% confidence interval (CI) 0.67 to 0.87), indicating substantial agreement. At six weeks after injury, patients whose fractures united had a significantly higher median score than those who developed nonunion (10 vs 7; p < 0.001). A receiver operating characteristic curve determined that a RUSHU cut-off of < 8 was predictive of nonunion (area under the curve = 0.84, 95% CI 0.74 to 0.94). The sensitivity was 75% and specificity 80% with a positive predictive value (PPV) of 65% and a negative predictive value of 86%. Patients with a RUSHU < 8 (n = 23) were more likely to develop nonunion than those with a RUSHU ≥ 8 (n = 37, odds ratio 12.0, 95% CI 3.4 to 42.9). Based on a PPV of 65%, if all patients with a RUSHU < 8 underwent fixation, the number of procedures needed to avoid one nonunion would be 1.5. Conclusion. The RUSHU is reliable and effective in identifying patients at risk of nonunion of a humeral shaft fracture at six weeks after injury. This tool requires
The primary aim was to estimate the cost-effectiveness of routine operative fixation for all patients with humeral shaft fractures. The secondary aim was to estimate the health economic implications of using a Radiographic Union Score for HUmeral fractures (RUSHU) of < 8 to facilitate selective fixation for patients at risk of nonunion. From 2008 to 2017, 215 patients (mean age 57 yrs (17 to 18), 61% female (n = 130/215)) with a nonoperatively managed humeral diaphyseal fracture were retrospectively identified. Union was achieved in 77% (n = 165/215) after initial nonoperative management, with 23% (n = 50/215) uniting after surgery for nonunion. The EuroQol five-dimension three-level health index (EQ-5D-3L) was obtained via postal survey. Multiple regression was used to determine the independent influence of patient, injury, and management factors upon the EQ-5D-3L. An incremental cost-effectiveness ratio (ICER) of < £20,000 per quality-adjusted life-year (QALY) gained was considered cost-effective.Aims
Methods