Advertisement for orthosearch.org.uk
Results 1 - 20 of 156
Results per page:
Bone & Joint 360
Vol. 7, Issue 4 | Pages 41 - 42
1 Aug 2018
Lovell M Foy MA


Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Bone & Joint 360
Vol. 11, Issue 6 | Pages 49 - 50
1 Dec 2022
Evans JT Whitehouse MR


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2


Bone & Joint Research
Vol. 6, Issue 5 | Pages 259 - 269
1 May 2017
McKirdy A Imbuldeniya AM

Objectives. To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods. This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results. There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, . sd. 39.6 versus 461.6, . sd. 61.63, p < 0.0001), days to first orthopaedic review (5.2, . sd. 0.66 versus 10.9, . sd. 1.5, p < 0.0001), discharges (33.5, . sd. 3.66 versus 129.2, . sd. 7.36, p < 0.0001) and non-attendees (14.82, . sd. 1.48 versus 60.47, . sd. 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds . sd. 106 seconds versus 13 minutes 44 seconds . sd. 128 seconds, p = 0.0878). VFC saved the local CCG £67 385.67 in the first year and is set to save £129 885.67 annually thereafter. Conclusions. We have shown VFCs are clinically and cost-effective, with improvement across several clinical performance parameters and substantial financial savings for CCGs. To our knowledge this is the largest study addressing clinical practice implications of VFCs in England, using robust methodology to adjust for pre-existing trends. Further studies are required to appreciate whether our results are reproducible with local variations in the VFC model and payment tariffs. Cite this article: A. McKirdy, A. M. Imbuldeniya. The clinical and cost effectiveness of a virtual fracture clinic service: An interrupted time series analysis and before-and-after comparison. Bone Joint Res 2017;6:–269. DOI: 10.1302/2046-3758.65.BJR-2017-0330.R1


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives . Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified. Methods . A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation. Results . Chronic cuff tears in nude rats resulted in a 30% to 40% decrease in muscle mass, a 23% reduction in production of muscle force, and an induction of genes that regulate atrophy, fibrosis, lipid accumulation, inflammation and macrophage recruitment. Marked large lipid droplet accumulation was also present. Conclusions . The extent of degenerative changes in nude rats was similar to what was observed in T-cell competent rats. T cells may not play an important role in regulating muscle degeneration following chronic muscle unloading. The general similarities between nude and T-cell competent rats suggest the nude rat is likely an appropriate preclinical model for the study of xenografts that have the potential to enhance the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 360 - 364
1 Mar 1998
McKee MD Yoo D Schemitsch EH

Previous studies of the Ilizarov procedure have concentrated on musculoskeletal assessments rather than the opinions of patients. In a prospective trial of 25 consecutive patients, we evaluated the effect of Ilizarov reconstruction of post-traumatic deformity on general health status using the SF36 and Nottingham Health Profile (NHP). The patients had very low preoperative scores, which remained low during treatment and correction, but increased postoperatively. The mean overall SF36 score improved from 36 ± 3 to 58 ± 7 (p = 0.031) and the NHP score from 39 ± 11 to 67 ± 10 (p = 0.002). The improvements in scores were not limited to the physical components and were equal or better than the improvements reported for other orthopaedic procedures, including total joint arthroplasty. Ilizarov-type reconstruction of deformity of the lower limb not only restores bony configuration, but also produces a large improvement in the general health status of patients


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 120 - 125
1 Jan 2000
Lan F Wunder JS Griffin AM Davis AM Bell RS White LM Ichise M Cole W

We used dual-energy x-ray absorptiometry (DEXA) to evaluate the extent of periprosthetic bone remodelling around a prosthesis for distal femoral reconstruction, the Kotz modular femoral tibial replacement (KMFTR; Howmedica, Rutherford, New Jersey). A total of 23 patients was entered into the study which had four parts: 1) 17 patients were scanned three times on both the implant and contralateral legs to determine whether the precision of DEXA measurements was adequate to estimate bone loss surrounding the anchorage piece of the KMFTR; 2) in 23 patients the bone mineral density (BMD) in different regions of interest surrounding the diaphyseal anchorage was compared with that of the contralateral femur at the same location to test whether there was consistent evidence of loss of BMD adjacent to the prosthetic stem; 3) in 12 patients sequential studies were performed about one year apart to compare bone loss; and 4) bone loss was compared in ten patients with implants fixed by three screws and in 13 without screws. The mean coefficients of variation (SD/mean) for the 17 sets of repeated scans ranged from 2.9% to 7.8% at different regions of interest in the KMFTR leg and from 1.4% to 2.5% in the contralateral leg. BMD was decreased in the KMFTR leg relative to the contralateral limb and the percentage of BMD loss in general increased as the region of interest moved distally in the femur. Studies done after one year showed no consistent pattern of progressive bone loss between the two measurements. The ten patients with implants fixed by screws were found to have a mean loss of BMD of 42% in the most distal part of the femur, while the 13 without screw fixation had a mean loss of 11%. DEXA was shown to have adequate precision to evaluate loss of BMD around the KMFTR. This was evident relative to the contralateral leg in all patients and generally increased in the most distal part of the femur. In general, it stabilised between two measurements taken one year apart and was greater surrounding implants fixed by cross-locking screws


Bone & Joint 360
Vol. 9, Issue 3 | Pages 44 - 45
1 Jun 2020
Das MA


Bone & Joint 360
Vol. 9, Issue 1 | Pages 10 - 14
1 Feb 2020
Ibrahim M Reito A Pidgaiska O


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 151 - 155
1 Jan 1998
Ahmed M Bergström J Lundblad H Gillespie WJ Kreicbergs A

We studied the presence of sensory nerves by immunohistochemistry in the interface membranes of hip prostheses after aseptic loosening. Substance P (SP), neurokinin A (NKA) and calcitonin gene-related peptide (CGRP) were analysed as was protein gene product (PGP) 9.5, a general marker for nerve fibres. We identified nerve fibres in all samples but differences in their density were found. SP- and NKA-positive fibres were predominantly non-vascular, forming varicose nerve terminals. CGRP-immunoreactive nerve fibres with varicose terminals were seen mostly close to blood vessels, but also as free nerve endings. Sensory neuropeptides participate not only in nociception but also stimulate immune cells to release cytokines. The presence of sensory nerves in the interface membrane may reflect a pathophysiological response contributing to the aseptic loosening of hip prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 274 - 277
1 Mar 2001
Drescher W Schneider T Becker C Hobolth J Rüther W Hansen ES Bünger C

Treatment with corticosteroids is a risk factor for non-traumatic avascular necrosis of the femoral head, but the pathological mechanism is poorly understood. Short-term treatment with high doses of methylprednisolone is used in severe neurotrauma and after kidney and heart transplantation. We investigated the effect of such treatment on the pattern of perfusion of the femoral head and of bone in general in the pig. We allocated 15 immature pigs to treatment with high-dose methylprednisolone (20 mg/kg per day intramuscularly for three days, followed by 10 mg/kg intramuscularly for a further 11 days) and 15 to a control group. Perfusion of the systematically subdivided femoral head, proximal femur, acetabulum, humerus, and soft tissues was determined by the microsphere technique. Blood flow in bone was severely reduced in the steroid-treated group. The reduction of flow affected all the segments and the entire epiphysis of the femoral head. No changes in flow were found in non-osseous tissue. Short-term treatment with high-dose methylprednisolone causes reduction of osseous blood flow which may be the pathogenetic factor in the early stage of steroid-induced osteonecrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 902 - 906
1 Sep 1999
Ochi M Iwasa J Uchio Y Adachi N Sumen Y

We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 299 - 305
1 Mar 2003
Hyvönen P Melkko J Lehto VP Jalovaara P

Our aim was to evaluate bursal involvement at different stages of the impingement syndrome as judged by conventional histopathological examination and expression of tenascin-C, which is known to reflect active reparative processes in different tissues and disorders. Samples of subacromial bursa were taken from 33 patients with tendinitis, 11 with a partial tear and 18 with a complete tear of the rotator cuff, and from 24 control shoulders. We assessed the expression of tenascin-C, the thickness of the bursa, and the occurrence and degree of fibrosis, vascularity, haemorrhage and inflammatory cells. The expression of tenascin-C was significantly more pronounced in the complete tear group (p < 0.001) than in the partial tear, tendinitis or control groups. It was more pronounced in the tendinitis group than in the control group (p = 0.06), and there was more fibrosis in all the study groups than in the control group. The changes in the other parameters were not equally distinctive. Expression of tenascin-C did not correlate with the conventional histopathological parameters, suggesting that these markers reflect different phases of the bursal reaction. Tenascin-C seems to be a general indicator of bursal reaction, being especially pronounced at the more advanced stages of impingement and this reaction seems to be an essential part of the pathology of impingement at all its stages


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.