Aims.
Aims. This paper aims to review the evidence for patient-related factors associated with less favourable outcomes following
Objective.
Aims. Responsiveness and ceiling effects are key properties of an outcome score. No such data have been reported for the original English version of the International Hip Outcome Tool 12 (iHOT-12) at a follow-up of more than four months. The aim of this study was to identify the responsiveness and ceiling effects of the English version iHOT-12 in a series of patients undergoing
There is a known association between femoroacetabular impingement and osteoarthritis of the hip. What is not known is whether arthroscopic excision of an impingement lesion can significantly improve a patient’s symptoms. This study compares the results of
Over an eight-month period we prospectively enrolled 122 patients who underwent arthroscopic surgery of the hip for femoroacetabular impingement and met the inclusion criteria for this study. Patients with bilateral
Reconstructive acetabular osteotomy is a well established and effective procedure in the treatment of acetabular dysplasia. However, the dysplasia is frequently accompanied by intra-articular pathology such as labral tears. We intended to determine whether a concomitant
Femoroacetabular Junction Impingement (FAI) describes abnormalities
in the shape of the femoral head–neck junction, or abnormalities
in the orientation of the acetabulum. In the short term, FAI can
give rise to pain and disability, and in the long-term it significantly increases
the risk of developing osteoarthritis. The Femoroacetabular Impingement
Trial (FAIT) aims to determine whether operative or non-operative
intervention is more effective at improving symptoms and preventing
the development and progression of osteoarthritis. FAIT is a multicentre superiority parallel two-arm randomised
controlled trial comparing physiotherapy and activity modification
with arthroscopic surgery for the treatment of symptomatic FAI.
Patients aged 18 to 60 with clinical and radiological evidence of
FAI are eligible. Principal exclusion criteria include previous
surgery to the index hip, established osteoarthritis (Kellgren–Lawrence
≥ 2), hip dysplasia (centre-edge angle <
20°), and completion
of a physiotherapy programme targeting FAI within the previous 12
months. Recruitment will take place over 24 months and 120 patients
will be randomised in a 1:1 ratio and followed up for three years.
The two primary outcome measures are change in hip outcome score
eight months post-randomisation (approximately six-months post-intervention
initiation) and change in radiographic minimum joint space width
38 months post-randomisation. ClinicalTrials.gov: NCT01893034. Cite this article: Aims
Methods
We studied 16 hips (eight cadaver specimens) using arthrography, arthroscopy and anatomical dissection, under incremental traction of up to a maximum of 64 kg, to determine the relationship of the portals to nearby neurovascular structures. The distance of each arthroscopic portal (anterior, anterolateral, and posterolateral) to the associated neurovascular structures was measured after the application of 23 kg of traction. Traction of up to 64 kg on the lower limb failed to produce evidence of labral or capsular injury. Furthermore, traction of 23 kg resulted in little change in the position of adjacent neurovascular structures relative to the standard arthroscopic portals.
Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for
Aims. This study reports mid-term outcomes after periacetabular osteotomy (PAO) exclusively in a borderline hip dysplasia (BHD) population to provide a contrast to published outcomes for arthroscopic surgery of the hip in BHD. Methods. We identified 42 hips in 40 patients treated between January 2009 and January 2016 with BHD defined as a lateral centre-edge angle (LCEA) of ≥ 18° but < 25°. A minimum five-year follow-up was available. Patient-reported outcomes (PROMs) including Tegner score, subjective hip value (SHV), modified Harris Hip Score (mHHS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were assessed. The following morphological parameters were evaluated: LCEA, acetabular index (AI), α angle, Tönnis staging, acetabular retroversion, femoral version, femoroepiphyseal acetabular roof index (FEAR), iliocapsularis to rectus femoris ratio (IC/RF), and labral and ligamentum teres (LT) pathology. Results. The mean follow-up was 96 months (67 to 139). The SHV, mHHS, WOMAC, and Tegner scores significantly improved (p < 0.001) at last follow-up. According to SHV and mHHS, there were three hips (7%) with poor results (SHV < 70), three (7%) with a fair score (70 to 79), eight (19%) with good results (80 to 89), and 28 (67%) who scored excellent (> 90) at the last follow-up. There were 11 subsequent operations: nine implant removals due to local irritation, one resection of postoperative heterotopic ossification, and one
Aims.
Aims. The frequency of severe femoral retroversion is unclear in patients with femoroacetabular impingement (FAI). This study aimed to investigate mean femoral version (FV), the frequency of absolute femoral retroversion, and the combination of decreased FV and acetabular retroversion (AR) in symptomatic patients with FAI subtypes. Methods. A retrospective institutional review board-approved observational study was performed with 333 symptomatic patients (384 hips) with hip pain due to FAI evaluated for hip preservation surgery. Overall, 142 patients (165 hips) had cam-type FAI, while 118 patients (137 hips) had mixed-type FAI. The allocation to each subgroup was based on reference values calculated on anteroposterior radiographs. CT/MRI-based measurement of FV (Murphy method) and AV were retrospectively compared among five FAI subgroups. Frequency of decreased FV < 10°, severely decreased FV < 5°, and absolute femoral retroversion (FV < 0°) was analyzed. Results. A significantly (p < 0.001) lower mean FV was found in patients with cam-type FAI (15° (SD 10°)), and in patients with mixed-type FAI (17° (SD 11°)) compared to severe over-coverage (20° (SD 12°). Frequency of decreased FV < 10° was significantly (p < 0.001) higher in patients with cam-type FAI (28%, 46 hips) and in patients with over-coverage (29%, 11 hips) compared to severe over-coverage (12%, 5 hips). Absolute femoral retroversion (FV < 0°) was found in 13% (5 hips) of patients with over-coverage, 6% (10 hips) of patients with cam-type FAI, and 5% (7 hips) of patients with mixed-type FAI. The frequency of decreased FV< 10° combined with acetabular retroversion (AV < 10°) was 6% (8 hips) in patients with mixed-type FAI and 5% (20 hips) in all FAI patients. Of patients with over-coverage, 11% (4 hips) had decreased FV < 10° combined with acetabular retroversion (AV < 10°). Conclusion. Patients with cam-type FAI had a considerable proportion (28%) of decreased FV < 10° and 6% had absolute femoral retroversion (FV < 0°), even more for patients with pincer-type FAI due to over-coverage (29% and 13%). This could be important for patients evaluated for open hip preservation surgery or
Aims. This study uses prospective registry data to compare early patient outcomes following arthroscopic repair or debridement of the acetabular labrum. Methods. Data on adult patients who underwent arthroscopic labral debridement or repair between 1 January 2012 and 31 July 2019 were extracted from the UK Non-Arthroplasty Hip Registry. Patients who underwent microfracture, osteophyte excision, or a concurrent extra-articular procedure were excluded. The EuroQol five-dimension (EQ-5D) and International Hip Outcome Tool 12 (iHOT-12) questionnaires were collected preoperatively and at six and 12 months post-operatively. Due to concerns over differential questionnaire non-response between the two groups, a combination of random sampling, propensity score matching, and pooled multivariable linear regression models were employed to compare iHOT-12 improvement. Results. A total of 2,025 labral debridements (55%) and 1,659 labral repairs (45%) were identified. Both groups saw significant (p < 0.001) EQ-5D and iHOT-12 gain compared to preoperative scores at 12 months (iHOT-12 improvement: labral repair = +28.7 (95% confidence interval (CI) 26.4 to 30.9), labral debridement = +24.7 (95% CI 22.5 to 27.0)), however there was no significant difference between procedures after multivariable modelling. Overall, 66% of cases achieved the minimum clinically important difference (MCID) and 48% achieved substantial clinical benefit at 12 months. Conclusion. Both labral procedures were successful in significantly improving early functional outcome following
Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by
Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with
Aims. Abnormal femoral torsion (FT) is increasingly recognized as an additional cause for femoroacetabular impingement (FAI). It is unknown if in-toeing of the foot is a specific diagnostic sign for increased FT in patients with symptomatic FAI. The aims of this study were to determine: 1) the prevalence and diagnostic accuracy of in-toeing to detect increased FT; 2) if foot progression angle (FPA) and tibial torsion (TT) are different among patients with abnormal FT; and 3) if FPA correlates with FT. Patients and Methods. A retrospective, institutional review board (IRB)-approved, controlled study of 85 symptomatic patients (148 hips) with FAI or hip dysplasia was performed in the gait laboratory. All patients had a measurement of FT (pelvic CT scan), TT (CT scan), and FPA (optical motion capture system). We allocated all patients to three groups with decreased FT (< 10°, 37 hips), increased FT (> 25°, 61 hips), and normal FT (10° to 25°, 50 hips). Cluster analysis was performed. Results. We found a specificity of 99%, positive predictive value (PPV) of 93%, and sensitivity of 23% for in-toeing (FPA < 0°) to detect increased FT > 25°. Most of the hips with normal or decreased FT had no in-toeing (false-positive rate of 1%). Patients with increased FT had significantly (p < 0.001) more in-toeing than patients with decreased FT. The majority of the patients (77%) with increased FT walk with a normal foot position. The correlation between FPA and FT was significant (r = 0.404, p < 0.001). Five cluster groups were identified. Conclusion. In-toeing has a high specificity and high PPV to detect increased FT, but increased FT can be missed because of the low sensitivity and high false-negative rate. These results can be used for diagnosis of abnormal FT in patients with FAI or hip dysplasia undergoing
The term developmental dysplasia of the hip (DDH)
describes a spectrum of disorders that results in abnormal development
of the hip joint. If not treated successfully in childhood, these
patients may go on to develop hip symptoms and/or secondary osteoarthritis
in adulthood. In this review we describe the altered anatomy encountered
in adults with DDH along with the management options, and the challenges
associated with
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of