Advertisement for orthosearch.org.uk
Results 1 - 20 of 4667
Results per page:
Bone & Joint Open
Vol. 5, Issue 10 | Pages 911 - 919
21 Oct 2024
Clement N MacDonald DJ Hamilton DF Gaston P

Aims. The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant design over a 12-year follow-up period, and whether patient-related factors were associated with loss to follow-up and mortality risk. Methods. Long-term follow-up of a randomized controlled trial was undertaken. A total of 212 patients were allocated a Triathlon or a Kinemax TKA. Patients were assessed preoperatively, and one, three, eight, and 12 years postoperatively using the Oxford Knee Score (OKS). Reasons for patient lost to follow-up, mortality, and revision were recorded. Results. A total of 94 patients completed 12-year functional follow-up (62 females, mean age 66 years (43 to 82) at index surgery). There was a clinically significantly greater improvement in the OKS at one year (mean difference (MD) 3.0 (95% CI 0.4 to 5.7); p = 0.027) and three years (MD 4.7 (95% CI 1.9 to 7.5); p = 0.001) for the Triathlon group, but no differences were observed at eight (p = 0.331) or 12 years’ (p = 0.181) follow-up. When assessing the OKS in the patients surviving to 12 years, the Triathlon group had a clinically significantly greater improvement in the OKS (marginal mean 3.8 (95% CI 0.2 to 7.4); p = 0.040). Loss to functional follow-up (53%, n = 109/204) was independently associated with older age (p = 0.001). Patient mortality was the major reason (56.4%, n = 62/110) for loss to follow-up. Older age (p < 0.001) and worse preoperative OKS (p = 0.043) were independently associated with increased mortality risk. An age at time of surgery of ≥ 72 years was 75% sensitive and 74% specific for predicting mortality with an area under the curve of 78.1% (95% CI 70.9 to 85.3; p < 0.001). Conclusion. The Triathlon TKA was associated with clinically meaningful greater improvement in knee-specific outcome when compared to the Kinemax TKA. Loss to follow-up at 12 years was a limitation, and studies planning longer-term functional assessment could limit their cohort to patients aged under 72 years. Cite this article: Bone Jt Open 2024;5(10):911–919


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1555 - 1560
4 Oct 2021
Phillips JRA Tucker K

Aims. Knee arthroplasty surgery is a highly effective treatment for arthritis and disorders of the knee. There are a wide variety of implant brands and types of knee arthroplasty available to surgeons. As a result of a number of highly publicized failures, arthroplasty surgery is highly regulated in the UK and many other countries through national registries, introduced to monitor implant performance, surgeons, and hospitals. With time, the options available within many brand portfolios have grown, with alternative tibial or femoral components, tibial insert materials, or shapes and patella resurfacings. In this study we have investigated the effect of the expansion of implant brand portfolios and where there may be a lack of transparency around a brand name. We also aimed to establish the potential numbers of compatible implant construct combinations. Methods. Hypothetical implant brand portfolios were proposed, and the number of compatible implant construct combinations was calculated. Results. A simple knee portfolio with cemented cruciate-retaining (CR) and posterior-stabilized (PS) components, with and without a patella, has four combinations. If there are two options available for each component, the numbers double for each option, resulting in 32 combinations. The effect of adding a third option multiplies the number by 1.3. Introducing compatible uncemented options, with the effect of hybrids, multiplies the number by 4. An implant portfolio with two femoral components (both in CR and PS), with two insert options and a patella, all in cemented and uncemented versions leads to 192 possible compatible implant construct combinations. There are implant brands available to surgeons with many more than two options. Conclusion. This study demonstrates that the addition of multiple variants within a knee brand portfolio leads to a large number (many hundreds) of compatible implant construct combinations. Revision rates of implant combinations are not currently reviewed at this level of granularity, leading to the risk of camouflage of true outcomes. Cite this article: Bone Joint J 2021;103-B(10):1555–1560


Bone & Joint Research
Vol. 9, Issue 2 | Pages 60 - 70
1 Feb 2020
Li Z Arioka M Liu Y Aghvami M Tulu S Brunski JB Helms JA

Aims. Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Methods. Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. Results. Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. Conclusion. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation. Cite this article:Bone Joint Res. 2020;9(2):60–70


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims. Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?. Methods. A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers. Results. A phenomenon of strain deterioration was identified if an excessive number of strikes was used to seat a component. This effect was most pronounced in low-density bone at high strike velocities. Polar gap was reduced with increasing strike mass and velocity. Conclusion. A high mallet mass with low strike velocity resulted in satisfactory implant stability and polar gap, while minimizing the risk of losing stability due to over-striking. Extreme caution not to over-strike must be exercised when using high velocity strikes in low-density bone for any mallet mass. Cite this article: Bone Joint Res 2020;9(7):386–393


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims

This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys.

Methods

Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 1001 - 1006
1 Jul 2013
Esteban J Alvarez-Alvarez B Blanco A Fernández-Roblas R Gadea I Garcia-Cañete J Sandoval E Valdazo M

We have designed a prospective study to evaluate the usefulness of prolonged incubation of cultures from sonicated orthopaedic implants. During the study period 124 implants from 113 patients were processed (22 osteosynthetic implants, 46 hip prostheses, 54 knee prostheses, and two shoulder prostheses). Of these, 70 patients had clinical infection; 32 had received antibiotics at least seven days before removal of the implant. A total of 54 patients had sonicated samples that produced positive cultures (including four patients without infection). All of them were positive in the first seven days of incubation. No differences were found regarding previous antibiotic treatment when analysing colony counts or days of incubation in the case of a positive result. In our experience, extending incubation of the samples to 14 days does not add more positive results for sonicated orthopaedic implants (hip and knee prosthesis and osteosynthesis implants) compared with a conventional seven-day incubation period. Cite this article: Bone Joint J 2013;95-B:1001–6


Aims. The aim of this study was to evaluate medium-term outcomes and complications of the S-ROM NOILES Rotating Hinge Knee System (DePuy, USA) in revision total knee arthroplasty (rTKA) at a tertiary unit. Methods. A retrospective consecutive study of all patients who underwent a rTKA using this implant from January 2005 to December 2018. Outcome measures included reoperations, revision for any cause, complications, and survivorship. Patients and implant survivorship data were identified through both local hospital electronic databases and linked data from the National Joint Registry/NHS Personal Demographic Service. Kaplan-Meier survival analysis was used at ten years. Results. A total of 89 consecutive patients (89 knees) were included with 47 females (52.8%) and a median age of 74 years (interquartile range 66 to 79). The main indications were aseptic loosening with instability (39.4%; n = 35) and infection (37.1%; n = 33) with the majority of patients managed through two-stage approach. The mean follow-up was 7.4 years (2 to 16). The overall rate of reoperation, for any cause, was 10.1% (n = 9) with a rate of implant revision of 6.7% (n = 6). Only two cases required surgery for patellofemoral complications. Kaplan-Meier implant-survivorship analysis was 93.3% at ten years, using revision for any cause as an endpoint. Conclusion. This implant achieved high ten-year survivorship with a low complication rate, particularly patellofemoral complications. These can be avoided by ensuring central patella tracking and appropriate tension of the patellofemoral joint in this posterior hinge design. Cite this article: Bone Jt Open 2022;3(3):205–210


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1327 - 1332
1 Nov 2024
Ameztoy Gallego J Diez Sanchez B Vaquero-Picado A Antuña S Barco R

Aims. In patients with a failed radial head arthroplasty (RHA), simple removal of the implant is an option. However, there is little information in the literature about the outcome of this procedure. The aim of this study was to review the mid-term clinical and radiological results, and the rate of complications and removal of the implant, in patients whose initial RHA was undertaken acutely for trauma involving the elbow. Methods. A total of 11 patients in whom removal of a RHA without reimplantation was undertaken as a revision procedure were reviewed at a mean follow-up of 8.4 years (6 to 11). The range of motion (ROM) and stability of the elbow were recorded. Pain was assessed using a visual analogue scale (VAS). The functional outcome was assessed using the Mayo Elbow Performance Score (MEPS), the Oxford Elbow Score (OES), and the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH). Radiological examination included the assessment of heterotopic ossification (HO), implant loosening, capitellar erosion, overlengthening, and osteoarthritis. Complications and the rate of further surgery were also recorded. Results. The indications for removal of the implant were stiffness in five patients, aseptic loosening in five, and pain attributed to the RHA in three. The mean time interval between RHA for trauma to removal was ten months (7 to 21). Preoperatively, three patients had overlengthening of the implant, three had capitellar erosion, six had HO, and four had radiological evidence of loosening. At the final follow-up, the mean the flexion-extension arc improved significantly by 38.2° (95% CI 20 to 59; p = 0.002) and the mean arc of prono-supination improved significantly by 20° (95% CI 0 to 72.5; p = 0.035). The mean pain VAS score improved significantly by 3.5 (95% CI 2 to 5.5; p = 0.004). The mean MEPS improved significantly by 27.5 (95% CI 17.5 to 42.5; p = 0.002). The mean OES improved significantly by 9 (95% CI 2.5 to 14; p = 0.012), and the mean DASH score improved significantly by 23.5 (95% CI 7.5 to 31.6; p = 0.012). Ten patients (91%) had HO and osteoarthritis. Two patients underwent further surgery due to stiffness and pain, respectively. Conclusion. Simple removal of the implant at revision surgery following a failed RHA introduced following trauma provides satisfactory mid-term results with an acceptable risk of complications. Osteoarthritis, instability, and radioulnar impingement were not problems in this series. Cite this article: Bone Joint J 2024;106-B(11):1327–1332


Bone & Joint Research
Vol. 13, Issue 12 | Pages 695 - 702
1 Dec 2024
Cordero García-Galán E Medel-Plaza M Pozo-Kreilinger JJ Sarnago H Lucía Ó Rico-Nieto A Esteban J Gomez-Barrena E

Aims. Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting. Methods. Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Staphylococcus aureus biofilm. Sacrifice and sample collection were performed 24, 48, or 96 hours postoperatively. Retrieved screws were sonicated, and adhered bacteria were estimated via drop-plate. Width of bone necrosis in retrieved femora was assessed through microscopic examination. Analysis was performed using non-parametric tests with significance fixed at p ≤ 0.05. Results. The width of necrosis margin in induction heating-treated knees ranged from 0 to 650 μm in the sterile-screw group, and 0 to 517 μm in the biofilm-infected group. No significant differences were found between paired knees. In rabbits implanted with sterile screws, no bacteria were detected. In rabbits implanted with infected screws, a significant bacterial load reduction with median 0.75 Log10 colony-forming units/ml was observed (p = 0.016). Conclusion. Induction heating was not associated with any demonstrable thermal bone necrosis in our rabbit knee model, and might reduce bacterial load in S. aureus biofilms on Ti6Al4V implants. Cite this article: Bone Joint Res 2024;13(12):695–702


Bone & Joint Open
Vol. 5, Issue 8 | Pages 715 - 720
23 Aug 2024
Shen TS Cheng R Chiu Y McLawhorn AS Figgie MP Westrich GH

Aims. Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used. Methods. We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA. Results. Robotic-assisted THA resulted in a lower proportion (1.5%) of implant waste compared to navigation-guided THA (2.0%) and manual THA (1.9%) (all p < 0.001). Both navigated and manual THA were more likely to waste acetabular shells (odds ratio (OR) 4.5 vs 3.1) and polyethylene liners (OR 2.2 vs 2.0) compared to robotic-assisted THA after adjusting for demographic and perioperative factors, such as surgeon experience (p < 0.001). While implant waste decreased with increasing experience for procedures performed manually (p < 0.001) or with navigation (p < 0.001), waste rates for robotic-assisted THA did not differ based on surgical experience. Conclusion. Robotic-assisted THAs wasted a smaller proportion of acetabular shells and polyethylene liners than navigation-guided and manual THAs. Individual implant waste rates vary depending on the type of technology used intraoperatively. Future studies on implant waste during THA should examine reasons for non-implantation in order to better understand and develop methods for cost-saving. Cite this article: Bone Jt Open 2024;5(8):715–720


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 277 - 283
1 Mar 2023
Gausden EB Puri S Chiu Y Figgie MP Sculco TP Westrich G Sculco PK Chalmers BP

Aims. The purpose of this study was to assess mid-term survivorship following primary total knee arthroplasty (TKA) with Optetrak Logic components and identify the most common revision indications at a single institution. Methods. We identified a retrospective cohort of 7,941 Optetrak primary TKAs performed from January 2010 to December 2018. We reviewed the intraoperative findings of 369 TKAs that required revision TKA from January 2010 to December 2021 and the details of the revision implants used. Kaplan-Meier analysis was used to determine survivorship. Cox regression analysis was used to examine the impact of patient variables and year of implantation on survival time. Results. The estimated survivorship free of all-cause revision was 98% (95% confidence interval (CI) 97% to 98%), 95% (95% CI 95% to 96%), and 86% (95% CI 83% to 88%) at two, five, and ten years, respectively. In 209/369 revisions there was a consistent constellation of findings with varying severity that included polyethylene wear and associated synovitis, osteolysis, and component loosening. This failure mode, which we refer to as aseptic mechanical failure, was the most common revision indication. The mean time from primary TKA to revision for aseptic mechanical failure was five years (5 months to 11 years). Conclusion. In this series of nearly 8,000 primary TKAs performed with a specific implant, we identified a lower-than-expected mid-term survivorship and a high number of revisions with a unique presentation. This study, along with the recent recall of the implant, confirms the need for frequent monitoring of patients with Optetrak TKAs given the incidence of polyethylene failure, osteolysis, and component loosening. Cite this article: Bone Joint J 2023;105-B(3):277–283


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 55 - 63
1 Jan 2020
Hagberg K Ghassemi Jahani S Kulbacka-Ortiz K Thomsen P Malchau H Reinholdt C

Aims. The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis. Methods. In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded. Results. The Q-TFA scores at two, five, seven, and ten years showed significantly more prosthetic use, better mobility, fewer problems, and an improved global situation, compared with baseline. The survival rate of the osseointegrated implant part (the fixture) was 89% and 72% after seven and 15 years, respectively. A total of 61 patients (55%) had mechanical complications (mean 3.3 (SD 5.76)), resulting in exchange of the percutaneous implant parts. There was a positive relationship between a higher activity grade and the number of mechanical complications. Conclusion. Compared with before treatment, the patient-reported outcome was significantly better and remained so over time. Although osseointegration and the ability to transfer loads over a 15-year period have been demonstrated, a large number of mechanical failures in the external implant parts were found. Since these were related to higher activity, restrictions in activity and improvements to the mechanical properties of the implant system are required. Cite this article: Bone Joint J 2020;102-B(1):55–63


Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST). Results. Greater bacterial burden in the early group compared to the delayed and control groups at revision surgery indicates a retraction of the infection from one to four weeks. Infection was cleared in all animals in the early and delayed groups at euthanasia, but not in the control group. Osteotomies healed in the early group, but bone healing was significantly compromised in the delayed and control groups. Conclusion. The duration of the infection from one to four weeks does not impact the success of infection clearance in this model. Bone healing, however, is impaired as the duration of the infection increases. Cite this article: Bone Joint Res 2024;13(3):127–135


Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 μg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 μg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. Conclusion. ABG’s use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin’s potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848–856


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 864 - 871
1 Aug 2023
Tyas B Marsh M de Steiger R Lorimer M Petheram TG Inman DS Reed MR Jameson SS

Aims. Several different designs of hemiarthroplasty are used to treat intracapsular fractures of the proximal femur, with large variations in costs. No clinical benefit of modular over monoblock designs has been reported in the literature. Long-term data are lacking. The aim of this study was to report the ten-year implant survival of commonly used designs of hemiarthroplasty. Methods. Patients recorded by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) between 1 September 1999 and 31 December 2020 who underwent hemiarthroplasty for the treatment of a hip fracture with the following implants were included: a cemented monoblock Exeter Trauma Stem (ETS), cemented Exeter V40 with a bipolar head, a monoblock Thompsons prosthesis (Cobalt/Chromium or Titanium), and an Exeter V40 with a Unitrax head. Overall and age-defined cumulative revision rates were compared over the ten years following surgery. Results. A total of 41,949 hemiarthroplasties were included. Exeter V40 with a Unitrax head was the most commonly used (n = 20,707, 49.4%). The overall rate of revision was small. A total of 28,201 patients (67.2%) were aged > 80 years. There were no significant differences in revision rates across all designs of hemiarthroplasty in patients of this age at any time. The revision rates for all designs were < 3.5%, three years postoperatively. At subsequent times the ETS and Exeter V40 with a bipolar head performed well in all age groups. The unadjusted ten-year mortality rate for the whole cohort was 82.2%. Conclusion. There was no difference in implant survival between all the designs of hemiarthroplasty in the first three years following surgery, supporting the selection of a cost-effective design of hemiarthroplasty for most patients with an intracapsular fracture of the hip, as determined by local availability and costs. Beyond this, the ETS and Exeter bipolar designs performed well in all age groups. Cite this article: Bone Joint J 2023;105-B(8):864–871


Bone & Joint Open
Vol. 4, Issue 2 | Pages 110 - 119
21 Feb 2023
Macken AA Prkić A van Oost I Spekenbrink-Spooren A The B Eygendaal D

Aims. The aim of this study is to report the implant survival and factors associated with revision of total elbow arthroplasty (TEA) using data from the Dutch national registry. Methods. All TEAs recorded in the Dutch national registry between 2014 and 2020 were included. The Kaplan-Meier method was used for survival analysis, and a logistic regression model was used to assess the factors associated with revision. Results. A total of 514 TEAs were included, of which 35 were revised. The five-year implant survival was 91%. Male sex, a higher BMI, and previous surgery to the same elbow showed a statistically significant association with revision (p < 0.036). Of the 35 revised implants, ten (29%) underwent a second revision. Conclusion. This study reports a five-year implant survival of TEA of 91%. Patient factors associated with revision are defined and can be used to optimize informed consent and shared decision-making. There was a high rate of secondary revisions. Cite this article: Bone Jt Open 2023;4(2):110–119


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims. The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. Materials and Methods. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA). Results. Substantial bone ingrowth was observed in all LRM implants, with and without HA, at both time periods. Bone ingrowth increased from 42% to 52% at four weeks, to 60% to 65% at 12 weeks. Mechanical tests indicated a minimum shear fixation strength of 20 MPa to 24 MPa at four weeks, and 34 MPa to 40 MPa at 12 weeks. There was no significant difference in the amount of bone ingrowth or in the shear strength between the three implant types at either time period. Conclusion. At four and 12 weeks, the 3D printed porous implants exhibited consistent bone ingrowth and high mechanical shear strength. Based on the results of this study, we confirmed the suitability of this novel new additive manufacturing porous material for biological fixation by bone ingrowth. Cite this article: Bone Joint J 2019;101-B(6 Supple B):62–67


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 468 - 474
1 May 2024
d'Amato M Flevas DA Salari P Bornes TD Brenneis M Boettner F Sculco PK Baldini A

Aims. Obtaining solid implant fixation is crucial in revision total knee arthroplasty (rTKA) to avoid aseptic loosening, a major reason for re-revision. This study aims to validate a novel grading system that quantifies implant fixation across three anatomical zones (epiphysis, metaphysis, diaphysis). Methods. Based on pre-, intra-, and postoperative assessments, the novel grading system allocates a quantitative score (0, 0.5, or 1 point) for the quality of fixation achieved in each anatomical zone. The criteria used by the algorithm to assign the score include the bone quality, the size of the bone defect, and the type of fixation used. A consecutive cohort of 245 patients undergoing rTKA from 2012 to 2018 were evaluated using the current novel scoring system and followed prospectively. In addition, 100 first-time revision cases were assessed radiologically from the original cohort and graded by three observers to evaluate the intra- and inter-rater reliability of the novel radiological grading system. Results. At a mean follow-up of 90 months (64 to 130), only two out of 245 cases failed due to aseptic loosening. Intraoperative grading yielded mean scores of 1.87 (95% confidence interval (CI) 1.82 to 1.92) for the femur and 1.96 (95% CI 1.92 to 2.0) for the tibia. Only 3.7% of femoral and 1.7% of tibial reconstructions fell below the 1.5-point threshold, which included the two cases of aseptic loosening. Interobserver reliability for postoperative radiological grading was 0.97 for the femur and 0.85 for the tibia. Conclusion. A minimum score of 1.5 points for each skeletal segment appears to be a reasonable cut-off to define sufficient fixation in rTKA. There were no revisions for aseptic loosening at mid-term follow-up when this fixation threshold was achieved or exceeded. When assessing first-time revisions, this novel grading system has shown excellent intra- and interobserver reliability. Cite this article: Bone Joint J 2024;106-B(5):468–474


Bone & Joint Open
Vol. 3, Issue 10 | Pages 741 - 745
1 Oct 2022
Baldock TE Dixon JR Koubaesh C Johansen A Eardley WGP

Aims. Patients with A1 and A2 trochanteric hip fractures represent a substantial proportion of trauma caseload, and national guidelines recommend that sliding hip screws (SHS) should be used for these injuries. Despite this, intramedullary nails (IMNs) are routinely implanted in many hospitals, at extra cost and with unproven patient outcome benefit. We have used data from the National Hip Fracture Database (NHFD) to examine the use of SHS and IMN for A1 and A2 hip fractures at a national level, and to define the cost implications of management decisions that run counter to national guidelines. Methods. We used the NHFD to identify all operations for fixation of trochanteric fractures in England and Wales between 1 January 2021 and 31 December 2021. A uniform price band from each of three hip fracture implant manufacturers was used to set cost implications alongside variation in implant use. Results. We identified 18,156 A1 and A2 trochanteric hip fractures in 162 centres. Of these, 13,483 (74.3%) underwent SHS fixation, 2,352 (13.0%) were managed with short IMN, and 2,321 (12.8%) were managed with long IMN. Total cost of IMN added up to £1.89 million in 2021, and the clinical justification for this is unclear since rates of IMN use varied from 0% to 97% in different centres. Conclusion. Most trochanteric hip fractures are managed with SHS, in keeping with national guidelines. There is considerable variance between hospitals for implant choice, despite the lack of evidence for clinical benefit and cost-effectiveness of more expensive nailing systems. This suggests either a lack of awareness of national guidelines or a choice not to follow them. We encourage provider units to reassess their practice if outwith the national norm. Funding bodies should examine implant use closely in this population to prevent resource waste at a time of considerable health austerity. Cite this article: Bone Jt Open 2022;3(10):741–745