Dislocation is a major concern following total hip arthroplasty (THA) for osteoarthritis (OA). Both dual-mobility components and standard acetabular components with large femoral heads are used to reduce the risk of dislocation. We investigated whether dual-mobility components are superior to standard components in reducing the two-year dislocation and revision risk in a propensity-matched sample from the Danish Hip Arthroplasty Register (DHR). This population-based cohort study analyzed data from the DHR and the Danish National Patient Register. We included all patients undergoing primary THA for OA from January 2010 to December 2019 with either dual-mobility or standard acetabular components with metal-on-polyethylene or ceramic-on-polyethylene articulations with a 36 mm femoral head. The samples were propensity score-matched on patient and implant characteristics. The primary outcome was the difference in the absolute risk of dislocation within two years, with a secondary outcome of the difference in the absolute risk of revision surgery of any cause within the same timeframe. The cumulative incidence of dislocation was calculated using the Aalen-Johansen estimator, while the difference in absolute risk was estimated using absolute risk regression (ARR).Aims
Methods
We have investigated whether control of balance is improved during stance and gait and sit-to-stand tasks after unilateral total hip replacement undertaken for osteoarthritis of the hip. We examined 25 patients with a mean age of 67 years ( Before surgery, control of balance during gait and sit-to-stand tasks was abnormal in patients with severe osteoarthritis of the hip, while balance during stance was similar to that of the healthy control group. After total hip replacement, there was a progressive improvement at four and 12 months for most gait and sit-to-stand tasks and in the time needed to complete them. By 12 months, the values approached those of the control group. However, trunk pitch (forwards-backwards) and roll (side-to-side) velocities were less stable (greater than the control) when walking over barriers as was roll for the sit-to-stand task, indicative of a residual deficit of balance. Our data suggest that patients with symptomatic osteoarthritis of the hip have marked deficits of balance in gait tasks, which may explain the increased risk of falling which has been reported in some epidemiological studies. However, total hip replacement may help these patients to regain almost normal control of balance for some gait tasks, as we found in this study. Despite the improvement in most components of balance, however, the deficit in the control of trunk velocity during gait suggests that a cautious follow-up is required after total hip replacement regarding the risk of a fall, especially in the elderly.