Abstract. MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these
In a retrospective cohort study we compared the
clinical outcome and complications, including dysphagia, following
anterior cervical fusion for the treatment of cervical spondylosis
using either a zero-profile (Zero-P; Synthes) implant or an anterior
cervical plate and cage. A total of 83 patients underwent fusion
using a Zero-P and 107 patients underwent fusion using a plate and
cage. The mean follow-up was 18.6 months ( When compared with the traditional anterior cervical plate and
cage, the Zero-P implant is a safe and convenient procedure giving
good results in patients with symptomatic cervical spondylosis with
a reduced incidence of dysphagia post-operatively. Cite this article:
Aims. The primary aim of this study was to evaluate the performance
and safety of magnetically controlled growth rods in the treatment
of early onset scoliosis. Secondary aims were to evaluate the clinical
outcome, the rate of further surgery, the rate of complications,
and the durability of correction. Patients and Methods. We undertook an observational prospective cohort study of children
with early onset scoliosis, who were recruited over a one-year period
and followed up for a minimum of two years. Magnetically controlled
rods were introduced in a standardized manner with distractions
performed three-monthly thereafter. Adverse events which were both related
and unrelated to the
To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.Aims
Methods
The aim of this study was to investigate the impact of the level of upper instrumented vertebra (UIV) in frail patients undergoing surgery for adult spine deformity (ASD). Patients with adult spinal deformity who had undergone T9-to-pelvis fusion were stratified using the ASD-Modified Frailty Index into not frail, frail, and severely frail categories. ASD was defined as at least one of: scoliosis ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, or pelvic tilt ≥ 25°. Means comparisons tests were used to assess differences between both groups. Logistic regression analyses were used to analyze associations between frailty categories, UIV, and outcomes.Aims
Methods
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods
Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination.Aims
Methods
The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.Aims
Methods
The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs). We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion.Aims
Methods
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Aims. Magnetically controlled growing rod (MCGR) systems use non-invasive
spinal lengthening for the surgical treatment of early-onset scoliosis
(EOS). The primary aim of this study was to evaluate the performance
of these
Objectives. Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Methods. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational
Aims. Magnetically controlled growing rods (MCGRs) allow non-invasive
correction of the spinal deformity in the treatment of early-onset
scoliosis. Conventional growing rod systems (CGRS) need repeated
surgical distractions: these are associated with the effect of the
‘law of diminishing returns’. The primary aim of this study was to quantify this effect in
MCGRs over sequential distractions. . Patients and Methods. A total of 35 patients with a maximum follow-up of 57 months
were included in the study. There were 17 boys and 18 girls with
a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined
by measuring the expansion gap on fluoroscopy. This was compared
with Intended Distraction (ID) and expressed as the ‘T/I’ ratio.
The T/I ratio and the Cobb angle were calculated at several time
points during follow-up. Results. The mean follow-up was 30 months (6 to 57). There was a significant
decrease in the mean T/I ratio over time (convex rod at 3 months
0.81, . sd. 0.58 vs 51 months 0.17, . sd . 0.16,
p = 0.0001; concave rod at 3 months 0.93, . sd. 0.67 vs 51
months 0.18, . sd. 0.15, p = 0.0001). A linear decline of
the mean T/I ratios was noted for both convex rods (r. 2. =
0.90, p = 0.004) and concave rods (r. 2. = 0.81, p = 0.015)
over 51 months. At the 24-month follow-up stage, there was a significant
negative correlation between the mean T/I ratio of the concave rod
with weight (r = -0.59, p = 0.01), age (r = -0.59, p = 0.01), and
BMI of the child (r = -0.54,
p = 0.01). Conclusions. The ‘law of diminishing returns’ is also seen after serial distraction
using MCGR. Compared to previously published data for CGRS, there
is a gradual linear decline rather than a rapid initial decline
in lengthening. In older, heavier children a reduced distraction
ratio in the concave rod of the MCGR
Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.Aims
Methods
The aim of the present study was to answer the question whether curve morphology and location have an influence on rigid conservative treatment in patients with adolescent idiopathic scoliosis (AIS). We retrospectively analyzed AIS in 127 patients with single and double curves who had been treated with a Chêneau brace and physiotherapeutic specific exercises (B-PSE). The inclusion criteria were the presence of structural major curves ≥ 20° and < 50° (Risser stage 0 to 2) at the time when B-PSE was initiated. The patients were divided into two groups according to the outcome of treatment: failure (curve progression to ≥ 45° or surgery) and success (curve progression < 45° and no surgery). The main curve type (MCT), curve magnitude, and length (overall, above and below the apex), apical rotation, initial curve correction, flexibility, and derotation by the brace were compared between the two groups.Aims
Methods
Using the United States Nationwide Inpatient
Sample, we identified national trends in revision spinal fusion
along with a comprehensive comparison of comorbidities, inpatient
complications and surgical factors of revision spinal fusion compared
to primary spinal fusion. In 2009, there were 410 158 primary spinal fusion discharges
and 22 128 revision spinal fusion discharges. Between 2002 and 2009,
primary fusion increased at a higher rate compared with revision
fusion (56.4% vs 51.0%; p <
0.001). In 2009,
the mean length of stay and hospital charges were higher for revision
fusion discharges than for primary fusion discharges (4.2 days vs 3.8
days, p <
0.001; USD $91 909 vs. $87 161, p
<
0.001). In 2009, recombinant human bone morphogenetic protein
(BMP) was used more in revision fusion than in primary fusion (39.6% vs 27.6%, p
<
0.001), whereas interbody
High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique. SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.Aims
Methods
Conventional growing rods are the most commonly
used distraction-based
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods