Advertisement for orthosearch.org.uk
Results 1 - 20 of 836
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1062 - 1071
1 Aug 2020
Cheung JPY Fong HK Cheung PWH

Aims. To determine the effectiveness of prone traction radiographs in predicting postoperative slip distance, slip angle, changes in disc height, and lordosis after surgery for degenerative spondylolisthesis of the lumbar spine. Methods. A total of 63 consecutive patients with a degenerative spondylolisthesis and preoperative prone traction radiographs obtained since 2010 were studied. Slip distance, slip angle, disc height, segmental lordosis, and global lordosis (L1 to S1) were measured on preoperative lateral standing radiographs, flexion-extension lateral radiographs, prone traction lateral radiographs, and postoperative lateral standing radiographs. Patients were divided into two groups: posterolateral fusion or posterolateral fusion with interbody fusion. Results. The mean changes in segmental lordosis and global lordosis were 7.1° (SD 6.7°) and 2.9° (SD 9.9°) respectively for the interbody fusion group, and 0.8° (SD 5.1°) and -0.4° (SD 10.1°) respectively for the posterolateral fusion-only group. Segmental lordosis (ρ = 0.794, p < 0.001) corrected by interbody fusion correlated best with prone traction radiographs. Global lumbar lordosis (ρ = 0.788, p < 0.001) correlated best with the interbody fusion group and preoperative lateral standing radiographs. The least difference in slip distance (-0.3 mm (SD 1.7 mm), p < 0.001), slip angle (0.9° (SD 5.2°), p < 0.001), and disc height (0.02 mm (SD 2.4 mm), p < 0.001) was seen between prone traction and postoperative radiographs. Regression analyses suggested that prone traction parameters best predicted correction of slip distance (Corrected Akaike’s Information Criterion (AICc) = 37.336) and disc height (AICc = 58.096), while correction of slip angle (AICc = 26.453) was best predicted by extension radiographs. Receiver operating characteristic (ROC) cut-off showed, with 68.3% sensitivity and 64.5% specificity, that to achieve a 3.0° increase in segmental lordotic angle, patients with a prone traction disc height of 8.5 mm needed an interbody fusion. Conclusion. Prone traction radiographs best predict the slip distance and disc height correction achieved by interbody fusion for lumbar degenerative spondylolisthesis. To achieve this maximum correction, interbody fusion should be undertaken if a disc height of more than 8.5 mm is attained on preoperative prone traction radiographs. Level of Evidence: Level II Prognostic Study. Cite this article: Bone Joint J 2020;102-B(8):1062–1071


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 616 - 618
1 May 2009
Amrani A Dendane MA El Alami ZF

A pronation deformity of the forearm following an obstetric brachial plexus injury causes functional and cosmetic disability. We evaluated the results of pronator teres transfer to correct their deformity in 14 children treated over a period of four years. The mean age at surgery was 7.6 years (5 to 15). The indication for surgery in each case was impairment of active supination in a forearm that could be passively supinated provided that there was no medial contracture of the shoulder and normal function of the hand. The median follow-up was 20.4 months (8 to 42). No patient was lost to follow-up. Qualitative results were also assessed. The median active supination improved from 5° (0° to 10°) to 75° (70° to 80°) with no loss of pronation. A passively correctible pronation contracture can be corrected safely and effectively by the transfer of pronator teres


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1508 - 1513
1 Nov 2013
Ploegmakers JJW The B Brutty M Ackland TR Wang AW

The aim of this study was to determine the effect of a Galeazzi fracture on the strength of pronation and supination at a mean of two years after surgical treatment. The strength of pronation and supination was measured in varying rotational positions of the forearm of ten male patients (mean age 38.9 years (21 to 64)) who had undergone plate fixation for a Galeazzi fracture. The stability of the distal radioulnar joint was assessed, and a clinical assessment using the quick-Disabilities of the Arm Shoulder and Hand (quickDASH) questionnaire and patient-related wrist examination (PRWE) scores was undertaken. In addition, the strength of pronation and supination was measured in a male control group of 42 healthy volunteers (mean age 21.8 years (18 to 37)). . The mean absolute loss of strength of supination in the injured compared with the non-injured arm throughout all ranges of forearm rotation was 16.1 kg (. sem. 5.3), corresponding to a relative loss of 12.5% (95% confidence interval (CI) 3.6 to 21.4). For the strength of pronation, the mean loss was 19.1 kg (. sem. 4.5), corresponding to a relative loss of 27.2% (95% CI 14.2 to 40.1). Loss of strength of supination following a Galeazzi fracture correlated with poor quickDASH (p = 0.03) and PRWE scores (p < 0.01). Loss of strength of pronation (27.2%), and of supination (12.5%) in particular, after a Galeazzi fracture is associated with worse clinical scores, highlighting the importance of supination of the forearm in function of the upper limb. Cite this article: Bone Joint J 2013;95-B:1508–13


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 905 - 908
1 Jul 2006
Hetsroni I Finestone A Milgrom C Sira DB Nyska M Radeva-Petrova D Ayalon M

Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill. Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1317 - 1319
1 Oct 2013
Gougoulias N Dawe EJC Sakellariou A

Most posterior hindfoot procedures have been described with the patient positioned prone. This affords excellent access to posterior hindfoot structures but has several disadvantages for the management of the airway, the requirement for an endotracheal tube in all patients, difficulty with ventilation and an increased risk of pressure injuries, especially with regard to reduced ocular perfusion. We describe use of the ‘recovery position’, which affords equivalent access to the posterior aspect of the ankle and hindfoot without the morbidity associated with the prone position. A laryngeal mask rather than endotracheal tube may be used in most patients. In this annotation we describe this technique, which offers a safe and simple alternative method of positioning patients for posterior hindfoot and ankle surgery. Cite this article: Bone Joint J 2013;95-B:1317–19


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1070 - 1074
1 Sep 2002
Dumont CE Thalmann R Macy JC

We have assessed the influence of isolated and combined rotational malunion of the radius and ulna on the rotation of the forearm. Osteotomies were made in both the radius and the ulna at the mid-diaphyseal level of five cadaver forearms and stabilised with intramedullary metal implants. Malunion about the axis of the respective forearm bone was produced at intervals of 10°. The ranges of pronation and supination were recorded by a potentiometer under computer control. We examined rotational malunions of 10° to 80° of either the radius or ulna alone and combined rotational malunions of 20° to 60° of both the radius and ulna. Malunion of the ulna in supination had little effect on rotation of the forearm. Malunion of either the radius or of the ulna in pronation gave a moderate reduction of rotation of the forearm. By contrast, malunion of the radius in supination markedly reduced rotation of the forearm, especially with malunion greater than 60°. Combined rotational malunion produced contrasting results. A combination of rotational malunion of the radius and ulna in the same direction had an effect similar to that of an isolated malunion of the radius. A combination in the opposite direction gave the largest limitation of the range of movement. Clinically, rotational malunion may be isolated or part of a complex angular/rotational deformity and rotational malunion may lead to marked impairment of rotation of the forearm. A reproducible method for assessing rotational malunion is therefore needed


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 5 | Pages 863 - 863
1 Nov 1989
Feagin J Cooke T


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 328 - 328
1 Mar 1993
Herwig-Kempers A Veraart B


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 297 - 298
1 Mar 1988
Olerud C Sahlstedt B Olerud S


Aims. The aim of this study was to assess and compare active rotation of the forearm in normal subjects after the application of a short-arm cast (SAC) in the semisupination position and a long-arm cast (LAC) in the neutral position. A clinical study was also conducted to compare the functional outcomes of using a SAC in the semisupination position with those of using a LAC in the neutral position in patients who underwent arthroscopic triangular fibrocartilage complex (TFCC) foveal repair. Methods. A total of 40 healthy right-handed volunteers were recruited. Active pronation and supination of the forearm were measured in each subject using a goniometer. In the retrospective clinical study, 40 patients who underwent arthroscopic foveal repair were included. The wrist was immobilized postoperatively using a SAC in the semisupination position (approximately 45°) in 16 patients and a LAC in 24. Clinical outcomes were assessed using grip strength and patient-reported outcomes. The degree of disability caused by cast immobilization was also evaluated when the cast was removed. Results. Supination was significantly more restricted with LACs than with SACs in the semisupination position in male and female patients (p < 0.001 for both). However, pronation was significantly more restricted with SACs in the semisupination position than with LACs in female patients (p = 0.003) and was not significantly different in male patients (p = 0.090). In the clinical study, both groups showed improvement in all parameters with significant differences in grip strength, visual analogue scale scores for pain, modified Mayo Wrist Score, the Disability of the Arm, Shoulder, and Hand (DASH) score, and the Patient-Rated Wrist Evaluation (PRWE) score. No significant postoperative differences were noted between LACs and SACs in the semisupination position. However, the disability caused by immobilization in a cast was significantly higher in patients who had a LAC on the dominant hand (p < 0.001). Conclusion. We found that a SAC in the semisupination position is as effective as a LAC in restricting pronation of the forearm. In addition, postoperative immobilization with a SAC in the semisupination position resulted in comparable pain scores and functional outcomes to immobilization with a LAC after TFCC foveal repair, with less restriction of daily activities. Therefore, we recommend that surgeons consider using a SAC in the semisupination position for postoperative immobilization following TFCC foveal repair for dorsal instability of the distal radioulnar joint. Cite this article: Bone Joint J 2022;104-B(2):249–256


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1301 - 1305
1 Nov 2024
Prajapati A Thakur RPS Gulia A Puri A

Aims. Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection. Methods. Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score. Results. All patients were available for follow-up at a mean of 33 months (25 to 43) and were disease-free. The mean flexion arc was 0° to 105°. Three patients had complications. One had neuropraxia of the ulnar nerve. The symptoms resolved after three months. In one patient, the screw used for fixation of the triceps tendon became exposed and was removed, six months postoperatively. One patient with wound dehiscence required a local flap for soft-tissue cover, four months postoperatively. At a mean follow-up of 33 months (25 to 43), the mean flexion arc was 0° to 105°. All patients had full supination (85°) but none had any pronation. The mean MSTS score was 23.5 (23 to 24) and mean QuickDASH-9 score was 26.13 (16.5 to 35.75). Three patients had varus-valgus instability on examination, although only one had a sense of instability while working. Conclusion. Radial neck to humeral trochlea transposition offers a satisfactory and cost-effective biological reconstructive option after osteoarticular resection of the proximal ulna, in the short term. It provides good elbow function and, being a biological reconstruction option using native bone, is likely to provide long-term stability and durability. Cite this article: Bone Joint J 2024;106-B(11):1301–1305


Bone & Joint Open
Vol. 5, Issue 5 | Pages 411 - 418
20 May 2024
Schneider P Bajammal S Leighton R Witges K Rondeau K Duffy P

Aims. Isolated fractures of the ulnar diaphysis are uncommon, occurring at a rate of 0.02 to 0.04 per 1,000 cases. Despite their infrequency, these fractures commonly give rise to complications, such as nonunion, limited forearm pronation and supination, restricted elbow range of motion, radioulnar synostosis, and prolonged pain. Treatment options for this injury remain a topic of debate, with limited research available and no consensus on the optimal approach. Therefore, this trial aims to compare clinical, radiological, and functional outcomes of two treatment methods: open reduction and internal fixation (ORIF) versus nonoperative treatment in patients with isolated ulnar diaphyseal fractures. Methods. This will be a multicentre, open-label, parallel randomized clinical trial (under National Clinical Trial number NCT01123447), accompanied by a parallel prospective cohort group for patients who meet the inclusion criteria, but decline randomization. Eligible patients will be randomized to one of the two treatment groups: 1) nonoperative treatment with closed reduction and below-elbow casting; or 2) surgical treatment with ORIF utilizing a limited contact dynamic compression plate and screw construct. The primary outcome measured will be the Disabilities of the Arm, Shoulder and Hand questionnaire score at 12 months post-injury. Additionally, functional outcomes will be assessed using the 36-Item Short Form Health Survey and pain visual analogue scale, allowing for a comparison of outcomes between groups. Secondary outcome measures will encompass clinical outcomes such as range of motion and grip strength, radiological parameters including time to union, as well as economic outcomes assessed from enrolment to 12 months post-injury. Ethics and dissemination. This trial has been approved by the lead site Conjoint Health Research Ethics Board (CHREB; REB14-2004) and local ethics boards at each participating site. Findings from the trial will be disseminated through presentations at regional, national, and international scientific conferences and public forums. The primary results and secondary findings will be submitted for peer-reviewed publication. Cite this article: Bone Jt Open 2024;5(5):411–418


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1498 - 1505
1 Dec 2019
Sonntag J Woythal L Rasmussen P Branner U Hølmer P Jensen AK Lange KHW Brorson S

Aims. The aim of this study was to investigate the difference in functional outcome after repair and non-repair of the pronator quadratus muscle in patients undergoing surgical treatment for a distal radial fracture with volar plating. Patients and Methods. A total of 72 patients with a distal radial fracture were included in this randomized clinical trial. They were allocated to have the pronator quadratus muscle repaired or not, after volar locked plating of a distal radial fracture. The patients, the assessor, the primary investigator, and the statistician were blinded to the allocation. Randomization was irreversibly performed using a web application that guaranteed a secure and tamper-free assignment. The primary outcome measure was the Patient Rated Wrist Evaluation (PRWE) after 12 months. Secondary outcomes included the Disabilities of the Arm, Shoulder and Hand (DASH) score, pronation strength, grip strength, the range of pronation and supination, complications, and the operating time. Results. Of the 72 patients, 63 (87.5%) completed follow-up for the primary outcome measure: 31 (86.1%) from the non-repair group and 32 (88.9%) from the repair group. At the 12-month follow-up, the mean difference in PRWE of 5.47 (95% confidence interval (CI) -4.02 to 14.96) between the repair (mean 18.38 (95% CI 10.34 to 26.41)) and non-repair group (mean 12.90 (95% CI 7.55 to 18.25)) was not statistically significant (p = 0.253). There was a statistically significant difference between pronation strength, favouring non-repair. We found no difference in the other secondary outcomes. Conclusion. We found that repairing pronator quadratus made no difference to the clinical outcome, 12 months after volar plating of a distal radial fracture. We conclude that there is no functional advantage in repairing this muscle under these circumstances and advise against it. Cite this article: Bone Joint J 2019;101-B:1498–1505


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1608 - 1617
1 Dec 2020
Castioni D Mercurio M Fanelli D Cosentino O Gasparini G Galasso O

Aims. The aim of this systematic review and meta-analysis is to evaluate differences in functional outcomes and complications between single- (SI) and double-incision (DI) techniques for the treatment of distal biceps tendon rupture. Methods. A comprehensive search on PubMed, MEDLINE, Scopus, and Cochrane Central databases was conducted to identify studies reporting comparative results of the SI versus the DI approach. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used for search strategy. Of 606 titles, 13 studies met the inclusion criteria; methodological quality was assessed with the Newcastle-Ottawa scale. Random- and fixed-effects models were used to find differences in outcomes between the two surgical approaches. The range of motion (ROM) and the Disabilities of the Arm, Shoulder and Hand (DASH) scores, as well as neurological and non-neurological complications, were assessed. Results. A total of 2,622 patients were identified. No significant differences in DASH score were detected between the techniques. The SI approach showed significantly greater ROM in flexion (standardized mean difference (SMD) -0.508; 95% confidence interval (CI) -0.904 to -0.112) and pronation (SMD -0.325, 95% CI -0.637 to -0.012). The DI technique was associated with significantly less risk of lateral antebrachial cutaneous nerve damage (odds ratio (OR) 4.239, 95% CI 2.171 to 8.278), but no differences were found for other nerves evaluated. The SI group showed significantly fewer events of heterotopic ossification (OR 0.430, 95% CI 0.226 to 0.816) and a lower reoperation rate (OR 0.503, 95% CI 0.317 to 0.798). Conclusion. No significant differences in functional scores can be expected between the SI and DI approaches after distal biceps tendon repair. The SI approach showed greater flexion and pronation ROM and a lower risk of heterotopic ossification and reoperation. The DI approach was favourable in terms of lower risk of neurological complications. Cite this article: Bone Joint J 2020;102-B(12):1608–1617


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 713 - 719
1 Jul 2024
Patel MS Shah S Elkazaz MK Shafafy M Grevitt MP

Aims. Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). Methods. We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC), based on the preoperative FEV1, FVC, major curve Cobb angle, and the planned number of instrumented levels. Results. Overall, 105 patients were enrolled. Their mean age was 15.5 years (11 to 25) with a mean weight of 55 kg (35 to 103). The mean Cobb angle was 68° (38° to 122°). Of these, 38 patients were preoperatively scored to receive postoperative CC. However, only 19% of the cohort (20/105) actually needed CC-level support. Based on these figures, and an average paediatric intensive care unit stay of one day before stepdown to ward-based care, the potential cost-saving on the first postoperative night for this cohort was over £20,000. There was no statistically significant difference between the Total Pathway Score (TPS), the numerical representation of the four factors being assessed, and the actual level of care received (p = 0.052) or the American Society of Anesthesiologists grade (p = 0.187). Binary logistic regression analysis of the TPS variables showed that the preoperative Cobb angle was the only variable which significantly predicted the need for critical care. Conclusion. Most patients undergoing posterior fusion surgery for AIS do not need critical care. Of the readily available preoperative measures, the Cobb angle is the only predictor of the need for higher levels of care, and has a threshold value of 74.5°. Cite this article: Bone Joint J 2024;106-B(7):713–719


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 828 - 834
1 Jun 2010
Coulet B Boretto JG Allieu Y Fattal C Laffont I Chammas M

We report the results of performing a pronating osteotomy of the radius, coupled with other soft-tissue procedures, as part of an upper limb functional surgery programme in tetraplegic patients with supination contractures. In total 12 patients were reviewed with a mean follow-up period of 60 months (12 to 109). Pre-operatively, passive movement ranged from a mean of 19.2° pronation (−70° to 80°) to 95.8° supination (80° to 140°). A pronating osteotomy of the radius was then performed with release of the interosseous membrane. Extension of the elbow was restored postoperatively in 11 patients, with key-pinch reconstruction in nine. At the final follow-up every patient could stabilise their hand in pronation, with a mean active range of movement of 79.6° (60° to 90°) in pronation and 50.4° (0° to 90°) in supination. No complications were observed. The mean strength of extension of the elbow was 2.7 (2 to 3) MRC grading. Pronating osteotomy stabilises the hand in pronation while preserving supination, if a complete release of the interosseous membrane is also performed. This technique fits well into surgical programmes for enhancing upper limb function


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1620 - 1628
1 Dec 2020
Klug A Nagy A Gramlich Y Hoffmann R

Aims. To evaluate the outcomes of terrible triad injuries (TTIs) in mid-term follow-up and determine whether surgical treatment of the radial head influences clinical and radiological outcomes. Methods. Follow-up assessment of 88 patients with TTI (48 women, 40 men; mean age 57 years (18 to 82)) was performed after a mean of 4.5 years (2.0 to 9.4). The Mayo Elbow Performance Score (MEPS), Oxford Elbow Score (OES), and Disabilities of the Arm, Shoulder and Hand (DASH) score were evaluated. Radiographs of all patients were analyzed. Fracture types included 13 Mason type I, 16 type II, and 59 type III. Surgical treatment consisted of open reduction and internal fixation (ORIF) in all type II and reconstructable type III fractures, while radial head arthroplasty (RHA) was performed if reconstruction was not possible. Results. At follow-up the mean MEPS was 87.1 (20 to 100); mean OES, 36.9 (6 to 48); and mean DASH score, 18.6 (0 to 90). Mean movement was 118° (30° to 150°) for extension to flexion and 162° (90° to 180°) for pronation to supination. The overall reoperation rate was 24%, with nine ORIF, ten RHA, and two patients without treatment to the radial head needing surgical revision. When treated with RHA, Mason type III fractures exhibited significantly inferior outcomes. Suboptimal results were also identified in patients with degenerative or heterotopic changes on their latest radiograph. In contrast, more favourable outcomes were detected in patients with successful radial head reconstruction after Mason type III fractures. Conclusion. Using a standardized protocol, sufficient elbow stability and good outcomes can be achieved in most TTIs. Although some bias in treatment allocation, with more severe injuries assigned to RHA, cannot be completely omitted, treatment of radial head fractures may have an independent effect on outcome, as patients subjected to RHA showed significantly inferior results compared to those subjected to reconstruction, in terms of elbow function, incidence of arthrosis, and postoperative complications. As RHA showed no apparent advantage in Mason type III injuries between the two treatment groups, we recommend reconstruction, providing stable fixation can be achieved. Cite this article: Bone Joint J 2020;102-B(12):1620–1628


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1395 - 1399
1 Oct 2011
Lee D Kim NH Park J Hwang CJ Lee CS Kim Y Kang SJ Rhee JM

We performed a prospective study to examine the influence of the patient’s position on the location of the abdominal organs, to investigate the possibility of a true lateral approach for transforaminal endoscopic lumbar discectomy. Pre-operative abdominal CT scans were taken in 20 patients who underwent endoscopic lumbar discectomy. Axial images in parallel planes of each intervertebral disc from L1 to L5 were achieved in both supine and prone positions. The most horizontal approach angles possible to avoid injury to the abdominal organs were measured. The results demonstrated that the safe approach angles were significantly less (i.e., more horizontal) in the prone than in the supine position. Obstacles to a more lateral approach were mainly the liver, the spleen and the kidneys at L1/2 (39 of 40, 97.5%) and L2/3 (28 of 40, 70.0%), and the intestines at L3/4 (33 of 40, 82.5%) and L4/5 (30 of 30, 100%). A true lateral approach from each side was possible for 30 of the 40 discs at L3/4 (75%) and 23 of the 30 discs at L4/5 (76.7%). We concluded that a more horizontal approach for transforaminal endoscopic lumbar discectomy is possible in the prone position but not in the supine. Prone abdominal CT is more helpful in determining the trajectory of the endoscope. While a true lateral approach is feasible in many patients, our study shows it is not universally applicable.