Antibiotics are often administrated prophylactically in spinal procedures to reduce the risk of infection of the disc space. It is still not known which antibiotics are able to penetrate the intervertebral disc effectively. In a prospective, randomised, double-blind clinical study, we examined the penetration of the intervertebral discs of two commonly used antibiotics, cefuroxime and gentamicin. The patients, randomised into two groups, received either 1.5 g of cefuroxime or 5 mg/kg of gentamicin prophylactically two hours before their intervertebral discs were removed. A specimen of blood, from which serum antibiotic levels were determined, was obtained at the time of discectomy.
Therapeutic levels of antibiotic were detectable in the intervertebral discs of the ten patients who received gentamicin. Only two of the ten patients (20%) who received cefuroxime had a quantifiable level of antibiotic in their discs although therapeutic serum levels of cefuroxime were found in all ten patients. Our results show that cefuroxime does not diffuse into human intervertebral discs as readily as gentamicin. It is possible that the charge due to ionisable groups on the antibiotics can influence the penetration of the antibiotics. We therefore recommend the use of gentamicin in a single prophylactic dose for all spinal procedures in order to reduce the risk of discitis.
We have studied the ability of a range of antibiotics to penetrate intervertebral disc tissue in vitro, using a mouse disc model. Equilibrium concentrations of antibiotics incorporated into the entire disc were determined by bioassay using a microbial growth-inhibition method. Uptake was significantly higher with positively-charged aminoglycosides compared with negatively-charged penicillins and cephalosporins. Uncharged ciprofloxacin showed an intermediate degree of uptake. Our results support the hypothesis that electrostatic interaction between charged antibiotics and negatively-charged glycosaminoglycans in the disc is an important factor in antibiotic penetration, and may explain their differential uptake.