Aims
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application.
Methods
In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.
Objectives
X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO43+) transport, due to extra renal defects resulting in unregulated
Methods
The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the