Aims. To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Methods. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval,
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of
To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF. The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected vertebrae (single or multilevel), anterior resection line (disc-to-disc or intravertebra), type of bone graft (autograft or frozen autograft), cage subsidence (CS), and local alignment (LA). A survival analysis of the instrumentation was performed, and relationships between IF and other factors were investigated using the Cox regression model.Aims
Methods
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
We evaluated the efficacy of Escherichia
coli-derived recombinant human bone morphogenetic protein-2
(E-BMP-2) in a mini-pig model of spinal anterior interbody fusion.
A total of 14 male mini-pigs underwent three-level anterior lumbar
interbody fusion using polyether etherketone (PEEK) cages containing
porous hydroxyapatite (HA). Four groups of cages were prepared:
1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg
E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks
after surgery the mini-pigs were killed and the specimens were evaluated
by gross inspection and manual palpation, radiological evaluation
including plain radiographs and micro-CT scans, and histological
analysis. Rates of fusion within PEEK cages and overall union rates
were calculated, and bone formation outside vertebrae was evaluated.
One
Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.Aims
Methods
Spinal fusion remains the gold standard in the treatment of idiopathic scoliosis. However, anterior vertebral body tethering (AVBT) is gaining widespread interest, despite the limited data on its efficacy. The aim of our study was to determine the clinical efficacy of AVBT in skeletally immature patients with idiopathic scoliosis. All consecutive skeletally immature patients with idiopathic scoliosis treated with AVBT enrolled in a longitudinal, multicentre, prospective database between 2013 and 2016 were analyzed. All patients were treated by one of two surgeons working at two independent centres. Data were collected prospectively in a multicentre database and supplemented retrospectively where necessary. Patients with a minimum follow-up of two years were included in the analysis. Clinical success was set a priori as a major coronal Cobb angle of < 35° at the most recent follow-up.Aims
Methods
Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.Aims
Methods
Cervical spondylosis is often accompanied by dizziness. It has
recently been shown that the ingrowth of Ruffini corpuscles into
diseased cervical discs may be related to cervicogenic dizziness.
In order to evaluate whether cervicogenic dizziness stems from the
diseased cervical disc, we performed a prospective cohort study
to assess the effectiveness of anterior cervical discectomy and
fusion on the relief of dizziness. Of 145 patients with cervical spondylosis and dizziness, 116
underwent anterior cervical decompression and fusion and 29 underwent
conservative treatment. All were followed up for one year. The primary
outcomes were measures of the intensity and frequency of dizziness.
Secondary outcomes were changes in the modified Japanese Orthopaedic
Association (mJOA) score and a visual analogue scale score for neck
pain.Aims
Patients and Methods
The primary aim of this study was to evaluate the performance
and safety of magnetically controlled growth rods in the treatment
of early onset scoliosis. Secondary aims were to evaluate the clinical
outcome, the rate of further surgery, the rate of complications,
and the durability of correction. We undertook an observational prospective cohort study of children
with early onset scoliosis, who were recruited over a one-year period
and followed up for a minimum of two years. Magnetically controlled
rods were introduced in a standardized manner with distractions
performed three-monthly thereafter. Adverse events which were both related
and unrelated to the device were recorded. Ten children, for whom
relevant key data points (such as demographic information, growth
parameters, Cobb angles, and functional outcomes) were available,
were recruited and followed up over the period of the study. There
were five boys and five girls. Their mean age was 6.2 years (2.5
to 10).Aims
Patients and Methods
We undertook a prospective non-randomised radiological study
to evaluate the preliminary results of using magnetically-controlled
growing rods (MAGEC System, Ellipse technology) to treat children
with early-onset scoliosis. Between January 2011 and January 2015, 19 children were treated
with magnetically-controlled growing rods (MCGRs) and underwent
distraction at three-monthly intervals. The mean age of our cohort
was 9.1 years (4 to 14) and the mean follow-up 22.4 months (5.1
to 35.2). Of the 19 children, eight underwent conversion from traditional growing
rods. Whole spine radiographs were carried out pre- and post-operatively:
image intensification was used during each lengthening in the outpatient
department. The measurements evaluated were Cobb angle, thoracic kyphosis,
proximal junctional kyphosis and spinal growth from T1 to S1.Aims
Patients and Methods
This study aimed to determine the relationship between pedicle-lengthening
distance and bulge-canal volume ratio in cases of lumbar spinal
stenosis, to provide a theoretical basis for the extent of lengthening
in pedicle-lengthening osteotomies. Three-dimensional reconstructions of CT images were performed
for 69 patients (33 men and 36 women) (mean age 49.96 years; 24
to 81). Simulated pedicle-lengthening osteotomies and disc bulge
and spinal canal volume calculations were performed using Mimics
software. Aims
Methods
In order to elucidate the influence of sympathetic nerves on
lumbar radiculopathy, we investigated whether sympathectomy attenuated
pain behaviour and altered the electrical properties of the dorsal
root ganglion (DRG) neurons in a rat model of lumbar root constriction. Sprague-Dawley rats were divided into three experimental groups.
In the root constriction group, the left L5 spinal nerve root was
ligated proximal to the DRG as a lumbar radiculopathy model. In
the root constriction + sympathectomy group, sympathectomy was performed
after the root constriction procedure. In the control group, no
procedures were performed. In order to evaluate the pain relief
effect of sympathectomy, behavioural analysis using mechanical and
thermal stimulation was performed. In order to evaluate the excitability
of the DRG neurons, we recorded action potentials of the isolated
single DRG neuron by the whole-cell patch-clamp method.Objectives
Methods
The aim of this study was to determine whether
obesity affects pain, surgical and functional outcomes following lumbar
spinal fusion for low back pain (LBP). A systematic literature review and meta-analysis was made of
those studies that compared the outcome of lumbar spinal fusion
for LBP in obese and non-obese patients. A total of 17 studies were
included in the meta-analysis. There was no difference in the pain
and functional outcomes. Lumbar spinal fusion in the obese patient resulted
in a statistically significantly greater intra-operative blood loss
(weighted mean difference: 54.04 ml; 95% confidence interval (CI)
15.08 to 93.00; n = 112; p = 0.007) more complications (odds ratio:
1.91; 95% CI 1.68 to 2.18; n = 43858; p <
0.001) and longer duration
of surgery (25.75 mins; 95% CI 15.61 to 35.90; n = 258; p <
0.001). Obese
patients have greater intra-operative blood loss, more complications
and longer duration of surgery but pain and functional outcome are
similar to non-obese patients. Based on these results, obesity is
not a contraindication to lumbar spinal fusion. Cite this article:
This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’.
The identification of the extent of neural damage
in patients with acute or chronic spinal cord injury is imperative for
the accurate prediction of neurological recovery. The changes in
signal intensity shown on routine MRI sequences are of limited value
for predicting functional outcome. Diffusion tensor imaging (DTI)
is a novel radiological imaging technique which has the potential
to identify intact nerve fibre tracts, and has been used to image
the brain for a variety of conditions. DTI imaging of the spinal
cord is currently only a research tool, but preliminary studies
have shown that it holds considerable promise in predicting the
severity of spinal cord injury. This paper briefly reviews our current knowledge of this technique.
Whiplash injury is surrounded by controversy in both the medical and legal world. The debate on whether it is either a potentially serious medical condition or a social problem is ongoing. This paper briefly examines a selection of studies on low velocity whiplash injury (LVWI) and whiplash associated disorder (WAD) and touches upon the pathophysiological and epidemiological considerations, cultural and geographical differences and the effect of litigation on chronicity. The study concludes that the evidence for significant physical injury after LVWI is poor, and if significant disability is present after such injury, it will have to be explained in terms of psychosocial factors.
The belief that an intervertebral disc must degenerate
before it can herniate has clinical and medicolegal significance,
but lacks scientific validity. We hypothesised that tissue changes
in herniated discs differ from those in discs that degenerate without
herniation. Tissues were obtained at surgery from 21 herniated discs
and 11 non-herniated discs of similar degeneration as assessed by
the Pfirrmann grade. Thin sections were graded histologically, and
certain features were quantified using immunofluorescence combined
with confocal microscopy and image analysis. Herniated and degenerated
tissues were compared separately for each tissue type: nucleus, inner
annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss
(outer annulus), neovascularisation (annulus), innervation (annulus),
cellularity/inflammation (annulus) and expression of matrix-degrading
enzymes (inner annulus) than degenerated discs. No significant differences
were seen in the nucleus tissue from herniated and degenerated discs.
Degenerative changes start in the nucleus, so it seems unlikely
that advanced degeneration caused herniation in 21 of these 32 discs.
On the contrary, specific changes in the annulus can be interpreted
as the consequences of herniation, when disruption allows local
swelling, proteoglycan loss, and the ingrowth of blood vessels,
nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes
always precede disc herniation. Cite this article:
Neurogenic claudication is most frequently observed
in patients with degenerative lumbar spinal stenosis. We describe
a patient with lumbar epidural varices secondary to obstruction
of the inferior vena cava by pathological lymph nodes presenting
with this syndrome. Following a diagnosis of follicular lymphoma,
successful chemotherapy led to the resolution of the varices and
the symptoms of neurogenic claudication. The lumbar epidural venous plexus may have an important role
in the pathogenesis of spinal stenosis. Although rare, epidural
venous engorgement can induce neurogenic claudication without spinal
stenosis. Further investigations should be directed at identifying
an underlying cause.
Conventional growing rods are the most commonly
used distraction-based devices in the treatment of progressive early-onset
scoliosis. This technique requires repeated lengthenings with the
patient anaesthetised in the operating theatre. We describe the
outcomes and complications of using a non-invasive magnetically
controlled growing rod (MCGR) in children with early-onset scoliosis.
Lengthening is performed on an outpatient basis using an external remote
control with the patient awake. Between November 2009 and March 2011, 34 children with a mean
age of eight years (5 to 12) underwent treatment. The mean length
of follow-up was 15 months (12 to 18). In total, 22 children were
treated with dual rod constructs and 12 with a single rod. The mean
number of distractions per patient was 4.8 (3 to 6). The mean pre-operative
Cobb angle was 69° (46° to 108°); this was corrected to a mean 47°
(28° to 91°) post-operatively. The mean Cobb angle at final review
was 41° (27° to 86°). The mean pre-operative distance from T1 to
S1 was 304 mm (243 to 380) and increased to 335 mm (253 to 400)
in the immediate post-operative period. At final review the mean distance
from T1 to S1 had increased to 348 mm (260 to 420). Two patients developed a superficial wound infection and a further
two patients in the single rod group developed a loss of distraction.
In the dual rod group, one patient had pull-out of a hook and one
developed prominent metalwork. Two patients had a rod breakage;
one patient in the single rod group and one patient in the dual
rod group. Our early results show that the MCGR is safe and effective
in the treatment of progressive early-onset scoliosis with the avoidance
of repeated surgical lengthenings. Cite this article:
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
In patients with osteoporosis there is always
a strong possibility that pedicle screws will loosen. This makes
it difficult to select the appropriate osteoporotic patient for
a spinal fusion. The purpose of this study was to determine the
correlation between bone mineral density (BMD) and the magnitude
of torque required to insert a pedicle screw. To accomplish this,
181 patients with degenerative disease of the lumbar spine were
studied prospectively. Each underwent dual-energy x-ray absorptiometry
(DEXA) and intra-operative measurement of the torque required to
insert each pedicle screw. The levels of torque generated in patients
with osteoporosis and osteopenia were significantly lower than those
achieved in normal patients. Positive correlations were observed between
BMD and T-value at the instrumented lumbar vertebrae, mean BMD and
mean T-value of the lumbar vertebrae, and mean BMD and mean T-value
of the proximal femur. The predictive torque (Nm) generated during pedicle
screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar
vertebrae)], as measured by linear regression analysis. The positive
correlation between BMD and the maximum torque required to insert
a pedicle screw suggests that pre-operative assessment of BMD may
be useful in determining the ultimate strength of fixation of a
device, as well as the number of levels that need to be fixed with
pedicle screws in patients who are suspected of having osteoporosis.
Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the annulus fibrosus along the edges of the fissures. SP-, NF- and VIP-immunoreactive nerve fibres in the painful discs were more extensive than in the control discs. Growth of nerves deep into the annulus fibrosus and nucleus pulposus was observed mainly along the zone of granulation tissue in the painful discs. This suggests that the zone of granulation tissue with extensive innervation along the tears in the posterior part of the painful disc may be responsible for causing the pain of discography and of discogenic low back pain.
A dural tear is a common but troublesome complication of endoscopic spinal surgery. The limitations of space make repair difficult, and it is often necessary to proceed to an open operation to suture the dura in order to prevent leakage of cerebrospinal fluid. We describe a new patch technique in which a small piece of polyglactin 910 is fixed to the injured dura with fibrin glue. Three pieces are generally required to obtain a watertight closure after lavage with saline. We have applied this technique in seven cases. All recovered well with no adverse effects. MRI showed no sign of leakage of cerebrospinal fluid.
We carried out a prospective study to determine whether the addition of a recombinant human bone morphogenetic protein (rhBMP-2) to a machined allograft spacer would improve the rate of intervertebral body fusion in the spine. We studied 77 patients who were to undergo an interbody fusion with allograft and instrumentation. The first 36 patients received allograft with adjuvant rhBMP-2 (allograft/rhBMP-2 group), and the next 41, allograft and demineralised bone matrix (allograft/demineralised bone matrix group). Each patient was assessed clinically and radiologically both pre-operatively and at each follow-up visit using standard methods. Follow-up continued for two years. Every patient in the allograft/rhBMP-2 group had fused by six months. However, early graft lucency and significant (>
10%) subsidence were seen radiologically in 27 of 55 levels in this group. The mean graft height subsidence was 27% (13% to 42%) for anterior lumbar interbody fusion, 24% (13% to 40%) for transforaminal lumbar interbody fusion, and 53% (40% to 58%) for anterior cervical discectomy and fusion. Those who had undergone fusion using allograft and demineralised bone matrix lost only a mean of 4.6% (0% to 15%) of their graft height. Although a high rate of fusion (100%) was achieved with rhBMP-2, significant subsidence occurred in more than half of the levels (23 of 37) in the lumbar spine and 33% (6 of 18) in the cervical spine. A 98% fusion rate (62 of 63 levels) was achieved without rhBMP-2 and without the associated graft subsidence. Consequently, we no longer use rhBMP-2 with allograft in our practice if the allograft has to provide significant structural support.
We present data relating to the Bryan disc arthroplasty for the treatment of cervical spondylosis in 46 patients. Patients with either radiculopathy or myelopathy had a cervical discectomy followed by implantation of a cervical disc prosthesis. Patients were reviewed at six weeks, six months and one year and assessment included three outcome measures, a visual analogue scale (VAS), the short form 36 (SF-36) and the neck disability index (NDI). The results were categorised according to a modification of Odom’s criteria. Radiological evaluation, by an independent radiologist, sought evidence of movement, stability and subsidence of the prosthesis. A highly significant difference was found for all three outcome measurements, comparing the pre-operative with the post-operative values: VAS (Z = 6.42, p <
0.0001), SF-36 (mental component) (Z = −5.02, p <
0.0001), SF-36 (physical component) (Z = −5.00, p <
0.0001) and NDI (Z = 7.03, p <
0.0001). The Bryan cervical disc prosthesis seems reliable and safe in the treatment of patients with cervical spondylosis.