Advertisement for orthosearch.org.uk
Results 1 - 40 of 40
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 140 - 143
1 Nov 2013
Scott RD

At least four ways have been described to determine femoral component rotation, and three ways to determine tibial component rotation in total knee replacement (TKR). Each method has its advocates and each has an influence on knee kinematics and the ultimate short and long term success of TKR. Of the four femoral component methods, the author prefers rotating the femoral component in flexion to that amount that establishes a stable symmetrical flexion gap. This judgement is made after the soft tissues of the knee have been balanced in extension.

Of the three tibial component methods, the author prefers rotating the tibial component into congruency with the established femoral component rotation with the knee is in extension. This yields a rotationally congruent articulation during weight-bearing and should minimise the torsional forces being transferred through a conforming tibial insert, which could lead to wear to the underside of the tibial polyethylene. Rotating platform components will compensate for any mal-rotation, but can still lead to pain if excessive tibial insert rotation causes soft-tissue impingement.

Cite this article: Bone Joint J 2013;95-B, Supple A:140–3.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 868 - 873
1 Jul 2020
Yang G Dai Y Dong C Kang H Niu J Lin W Wang F

Aims. The purpose of this study was to explore the correlation between femoral torsion and morphology of the distal femoral condyle in patients with trochlear dysplasia and lateral patellar instability. Methods. A total of 90 patients (64 female, 26 male; mean age 22.1 years (SD 7.2)) with lateral patellar dislocation and trochlear dysplasia who were awaiting surgical treatment between January 2015 and June 2019 were retrospectively analyzed. All patients underwent CT scans of the lower limb to assess the femoral torsion and morphology of the distal femur. The femoral torsion at various levels was assessed using the a) femoral anteversion angle (FAA), b) proximal and distal anteversion angle, c) angle of the proximal femoral axis-anatomical epicondylar axis (PFA-AEA), and d) angle of the AEA–posterior condylar line (AEA-PCL). Representative measurements of distal condylar length were taken and parameters using the ratios of the bianterior condyle, biposterior condyle, bicondyle, anterolateral condyle, and anteromedial condyle were calculated and correlated with reference to the AEA, using the Pearson Correlation coefficient. Results. The femoral torsion had a strong correlation with distal condylar morphology. The FAA was significantly correlated with the ratio of the bianterior condyle (r = 0.355; p = 0.009), the AEA-PCL angle (r = 0.340; p = 0.001) and the ratio of the anterolateral condyle and lateral condyle (ALC-LC) (r = 0.309; p = 0.014). The PFA-AEA angle was also significantly correlated with the ratio of the bianterior condyle (r = 0.319; p = 0.008), the AEA-PCL angle (r = 0.231; p = 0.031), and the ratio of ALC-LC (r = 0.261; p = 0.034). In addition, the bianterior condyle ratio showed a significant correlation with the biposterior condyle ratio (r = -0.324; p = 0.027) and the AEA-PCL angle (r = 0.342; p = 0.021). Conclusion. Increased femoral torsion correlated with a prominent anterolateral condyle and a shorter posterolateral condyle compared with the medial condyle. The deformities of the anterior and posterior condyles are combined deformities rather than being isolated and individual deformities in patients with trochlear dysplasia and patella instability. Cite this article: Bone Joint J 2020;102-B(7):868–873


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims

Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies.

Methods

In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.


Aims

Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions.

Methods

A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims. In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity. Materials and Methods. We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied. . Results. During squatting and kneeling, the knees displayed femoral external rotation. When sitting cross-legged, femurs displayed internal rotation from 10° to 100°. From 100°, femoral external rotation was observed. No significant difference in varus-valgus angle was seen between squatting and kneeling, whereas a varus position was observed from 140° when sitting cross-legged. The measure kinematic pathway using our methodology found during squatting a medial pivoting pattern from 0° to 40° and bicondylar rollback from 40° to 150°. During kneeling, a medial pivot pattern was evident. When sitting cross-legged, a lateral pivot pattern was seen from 0° to 100°, and a medial pivot pattern beyond 100°. Conclusion. The kinematics of normal knees during high flexion are variable according to activity. Nevertheless, our study was limited to a small number of male patients using a different technique to report the kinematics than previous publications. Accordingly, caution should be observed in generalizing our findings. Cite this article: Bone Joint J 2018;100-B:50–5


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1441 - 1447
1 Nov 2006
Cui W Won Y Baek M Kim K Cho J

The appearance of the ‘grand-piano sign’ on the anterior resected surface of the femur has been considered to be a marker for correct femoral rotational alignment during total knee replacement. Our study was undertaken to assess quantitatively the morphological patterns on the resected surface after anterior femoral resection with various angles of external rotation, using a computer-simulation technique. A total of 50 right distal femora with varus osteoarthritis in 50 Korean patients were scanned using computerised tomography. Computer image software was used to simulate the anterior femoral cut, which was applied at an external rotation of 0°, 3° and 6° relative to the posterior condylar axis, and parallel to the surgical and clinical epicondylar axes in each case. The morphological patterns on the resected surface were quantified and classified as the ‘grand-piano sign’, ‘the boot sign’ and the ‘butterfly sign’. The surgeon can use the analogy of these quantified sign patterns to ensure that a correct rotational alignment has been obtained intra-operatively


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims

No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model.

Methods

A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA).

Methods

A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 105 - 112
1 Jan 2021
Lynch JT Perriman DM Scarvell JM Pickering MR Galvin CR Neeman T Smith PN

Aims

Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs.

Methods

In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 510 - 514
1 May 2004
Sikorski JM

A technique for performing allograft-augmented revision total knee replacement (TKR) using computer assistance is described, on the basis of the results in 14 patients. Bone deficits were made up with impaction grafting. Femoral grafting was made possible by the construction of a retaining wall or dam which allowed pressurisation and retention of the graft. Tibial grafting used a mixture of corticocancellous and morsellised allograft. The position of the implants was monitored by the computer system and adjusted while the cement was setting. The outcome was determined using a six-parameter, quantitative technique (the Perth CT protocol) which measured the alignment of the prosthesis and provided an objective score. The final outcomes were not perfect with errors being made in femoral rotation and in producing a mismatch between the femoral and tibial components. In spite of the shortcomings the alignments were comparable in accuracy with those after primary TKR. Computer assistance shows considerable promise in producing accurate alignment in revision TKR with bone deficits


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims

Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment.

Methods

A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 372 - 377
1 Apr 2004
Chauhan SK Scott RG Breidahl W Beaver RJ

We have compared a new technique of computer-assisted knee arthroplasty with the current conventional jig-based technique in 70 patients randomly allocated to receive either of the methods. Post-operative CT was performed according to the Perth CT Knee Arthroplasty protocol and pre- and post-operative Maquet views of the limb were taken. Intra-operative and peri-operative morbidity data were collected and blood loss measured. Post-operative CT showed a significant improvement in the alignment of the components using computer-assisted surgery in regard to femoral varus/valgus (p = 0.032), femoral rotation (p = 0.001), tibial varus/valgus (p = 0.047) tibial posterior slope (p = 0.0001), tibial rotation (p = 0.011) and femorotibial mismatch (p = 0.037). Standing alignment was also improved (p = 0.004) and blood loss was less (p = 0.0001). Computer-assisted surgery took longer with a mean increase of 13 minutes (p = 0.0001)


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims

The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design.

Methods

A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims

A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation.

Methods

This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method.

Methods

Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims

The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA).

Patients and Methods

This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (sd 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (sd 3.4).


The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 660 - 666
1 Jun 2019
Chalmers BP Limberg AK Athey AG Perry KI Pagnano MW Abdel MP

Aims

There is little literature about total knee arthroplasty (TKA) after distal femoral osteotomy (DFO). Consequently, the purpose of this study was to analyze the outcomes of TKA after DFO, with particular emphasis on: survivorship free from aseptic loosening, revision, or any re-operation; complications; radiological results; and clinical outcome.

Patients and Methods

We retrospectively reviewed 29 patients (17 women, 12 men) from our total joint registry who had undergone 31 cemented TKAs after a DFO between 2000 and 2012. Their mean age at TKA was 51 years (22 to 76) and their mean body mass index 32 kg/m2 (20 to 45). The mean time between DFO and TKA was ten years (2 to 20). The mean follow-up from TKA was ten years (2 to 16). The prostheses were posterior-stabilized in 77%, varus-valgus constraint (VVC) in 13%, and cruciate-retaining in 10%. While no patient had metaphyseal fixation (e.g. cones or sleeves), 16% needed a femoral stem.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1336 - 1344
1 Oct 2018
Powell AJ Crua E Chong BC Gordon R McAuslan A Pitto RP Clatworthy MG

Aims

This study compares the PFC total knee arthroplasty (TKA) system in a prospective randomized control trial (RCT) of the mobile-bearing rotating-platform (RP) TKA against the fixed-bearing (FB) TKA. This is the largest RCT with the longest follow-up where cruciate-retaining PFC total knee arthroplasties are compared in a non-bilateral TKA study.

Patients and Methods

A total of 167 patients (190 knees with 23 bilateral cases), were recruited prospectively and randomly assigned, with 91 knees receiving the RP and 99 knees receiving FB. The mean age was 65.5 years (48 to 82), the mean body mass index (BMI) was 29.7 kg/m2 (20 to 52) and 73 patients were female. The Knee Society Score (KSS), Knee Society Functional Score (KSFS), Oxford Knee Score (OKS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and 12-Item Short-Form Health Survey Physical and Mental Component Scores (SF-12 PCS, SF-12 MCS) were gathered and recorded preoperatively, at five-years’ follow-up, and at ten years’ follow-up. Additionally, Knee Injury and Osteoarthritis Outcome Scores (KOOS) were collected at five- and ten-year follow-ups. The prevalence of radiolucent lines (RL) on radiographs and implant survival were recorded at five- and ten-year follow-ups.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives

Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments.

Materials and Methods

Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1043 - 1049
1 Aug 2016
Huijbregts HJTAM Khan RJK Fick DP Hall MJ Punwar SA Sorensen E Reid MJ Vedove SD Haebich S

Aims

We conducted a randomised controlled trial to assess the accuracy of positioning and alignment of the components in total knee arthroplasty (TKA), comparing those undertaken using standard intramedullary cutting jigs and those with patient-specific instruments (PSI).

Patients and Methods

There were 64 TKAs in the standard group and 69 in the PSI group.

The post-operative hip-knee-ankle (HKA) angle and positioning was investigated using CT scans. Deviation of > 3° from the planned position was regarded as an outlier. The operating time, Oxford Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 151 - 158
1 Feb 2017
Huang T Long Y George D Wang W

Aims

There are two techniques widely used to determine the rotational alignment of the components in total knee arthroplasty (TKA); gap balancing (GB) and measured resection (MR). Which technique is the best remains controversial. We aimed to investigate this in a systematic review and meta-analysis.

Materials and Methods

In accordance with the methods of Cochrane, databases were searched for all randomised controlled trials in the literature between January 1986 and June 2015 comparing radiographic and clinical outcomes between the use of these two tecniques. Meta-analysis involved the use of the Revman5.3 software provided by Cochrane collaboration.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 159 - 170
1 Feb 2017
Clark D Metcalfe A Wogan C Mandalia V Eldridge J

Patellar instability most frequently presents during adolescence. Congenital and infantile dislocation of the patella is a distinct entity from adolescent instability and measurable abnormalities may be present at birth. In the normal patellofemoral joint an increase in quadriceps angle and patellar height are matched by an increase in trochlear depth as the joint matures. Adolescent instability may herald a lifelong condition leading to chronic disability and arthritis.

Restoring normal anatomy by trochleoplasty, tibial tubercle transfer or medial patellofemoral ligament (MPFL) reconstruction in the young adult prevents further instability. Although these techniques are proven in the young adult, they may cause growth arrest and deformity where the physis is open. A vigorous non-operative strategy may permit delay of surgery until growth is complete. Where non-operative treatment has failed a modified MPFL reconstruction may be performed to maintain stability until physeal closure permits anatomical reconstruction. If significant growth remains an extraosseous reconstruction of the MPFL may impart the lowest risk to the physis. If minor growth remains image intensifier guided placement of femoral intraosseous fixation may impart a small, but acceptable, risk to the physis.

This paper presents and discusses the literature relating to adolescent instability and provides a framework for management of these patients.

Cite this article: Bone Joint J 2017;99-B:159–70.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1039 - 1044
1 Aug 2008
Lützner J Krummenauer F Wolf C Günther K Kirschner S

After obtaining informed consent, 80 patients were randomised to undergo a navigated or conventional total knee replacement. All received a cemented, unconstrained, cruciate-retaining implant with a rotating platform. Full-length standing and lateral radiographs and CT scans of the hip, knee and ankle joint were carried out five to seven days after operation.

No notable differences were found between computer-assisted navigation and conventional implantation techniques as regards the rotational alignment of the femoral or tibial components. Although the deviation from the transepicondylar axis was relatively low, there was a considerable range of deviation for the tibial rotational alignment. There was no statistically significant difference regarding the occurrence pattern of outliers in mechanical malalignment but the number of outliers was reduced in the navigated group.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1644 - 1648
1 Dec 2014
Abdel MP Pulido L Severson EP Hanssen AD

Instability in flexion after total knee replacement (TKR) typically occurs as a result of mismatched flexion and extension gaps. The goals of this study were to identify factors leading to instability in flexion, the degree of correction, determined radiologically, required at revision surgery, and the subsequent clinical outcomes. Between 2000 and 2010, 60 TKRs in 60 patients underwent revision for instability in flexion associated with well-fixed components. There were 33 women (55%) and 27 men (45%); their mean age was 65 years (43 to 82). Radiological measurements and the Knee Society score (KSS) were used to assess outcome after revision surgery. The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar offset (p < 0.001), distalisation of the joint line (p < 0.001) and increased posterior tibial slope (p < 0.001) contributed to instability in flexion and required correction at revision to regain stability. The combined mean correction of posterior condylar offset and joint line resection was 9.5 mm, and a mean of 5° of posterior tibial slope was removed. At the most recent follow-up, there was a significant improvement in the mean KSS for the knee and function (both p < 0.001), no patient reported instability and no patient underwent further surgery for instability.

The following step-wise approach is recommended: reduction of tibial slope, correction of malalignment, and improvement of condylar offset. Additional joint line elevation is needed if the above steps do not equalise the flexion and extension gaps.

Cite this article: Bone Joint J 2014;96-B:1644–8.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees).

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1466 - 1471
1 Nov 2009
Ramaswamy R Kosashvili Y Cameron HU Cameron JC

The management of osteoarthritis of the knee associated with patellar instability secondary to external tibial torsion > 45° is challenging. Patellofemoral biomechanics in these patients cannot be achieved by intra-articular correction using standard techniques of total knee replacement.

We reviewed seven patients (eight knees) with recurrent patellar dislocation and one with bilateral irreducible lateral dislocation who had undergone simultaneous total knee replacement and internal tibial derotational osteotomy. All had osteoarthritis and severe external tibial torsion. The mean follow-up was for 47.2 months (24 to 120).

The mean objective and functional Knee Society scores improved significantly (p = 0.0001) from 29.7 and 41.5 pre-operatively to 71.4 and 73.5 post-operatively, respectively. In all patients the osteotomies healed and patellar stability was restored.

Excessive external tibial torsion should be identified and corrected in patients with osteoarthritis and patellar instability. Simultaneous internal rotation osteotomy of the tibia and total knee replacement is a technically demanding but effective treatment for such patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation.

We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans.

The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group.

The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group.

The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group.

The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 45 - 49
1 Jan 2007
Ikeuchi M Yamanaka N Okanoue Y Ueta E Tani T

We prospectively assessed the benefits of using either a range-of-movement technique or an anatomical landmark method to determine the rotational alignment of the tibial component during total knee replacement. We analysed the cut proximal tibia intraoperatively, determining anteroposterior axes by the range-of-movement technique and comparing them with the anatomical anteroposterior axis.

We found that the range-of-movement technique tended to leave the tibial component more internally rotated than when anatomical landmarks were used. In addition, it gave widely variable results (mean 7.5°; 2° to 17°), determined to some extent by which posterior reference point was used. Because of the wide variability and the possibilities for error, we consider that it is inappropriate to use the range-of-movement technique as the sole method of determining alignment of the tibial component during total knee replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 471 - 476
1 Apr 2007
Kim Y Kim J Yoon S

Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and alignment of the components. There were 85 women and 15 men with a mean age of 67.6 years (54 to 83). Radiological and CT imaging was carried out to determine the alignment of the components. The mean follow-up was 2.3 years (2 to 3).

The operating and tourniquet times were significantly longer in the navigation group (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). The results of imaging and the number of outliers for all radiological parameters were not statistically different (p = 0.109 to p = 0.920).

In this series computer-assisted navigated total knee replacement did not result in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 436 - 444
1 Apr 2013
Scott CEH Nutton RW Biant LC

The lateral compartment is predominantly affected in approximately 10% of patients with osteoarthritis of the knee. The anatomy, kinematics and loading during movement differ considerably between medial and lateral compartments of the knee. This in the main explains the relative protection of the lateral compartment compared with the medial compartment in the development of osteoarthritis. The aetiology of lateral compartment osteoarthritis can be idiopathic, usually affecting the femur, or secondary to trauma commonly affecting the tibia. Surgical management of lateral compartment osteoarthritis can include osteotomy, unicompartmental knee replacement and total knee replacement. This review discusses the biomechanics, pathogenesis and development of lateral compartment osteoarthritis and its management.

Cite this article: Bone Joint J 2013;95-B:436–44.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 787 - 792
1 Jun 2012
Thomsen MG Husted H Bencke J Curtis D Holm G Troelsen A

The purpose of this study was to investigate whether a gender-specific high-flexion posterior-stabilised (PS) total knee replacement (TKR) would offer advantages over a high-flex PS TKR regarding range of movement (ROM), ‘feel’ of the knee, pain and satisfaction, as well as during activity. A total of 24 female patients with bilateral osteoarthritis entered this prospective, blind randomised trial in which they received a high-flex PS TKR in one knee and a gender-specific high-flexion PS TKR in the other knee. At follow-up, patients were assessed clinically measuring ROM, and questioned about pain, satisfaction and daily ‘feel’ of each knee. Patients underwent gait analysis pre-operatively and at one year, which yielded kinematic, kinetic and temporospatial parameters indicative of knee function during gait. At final follow-up we found no statistically significant differences in ROM (p = 0.82). The median pain score was 0 (0 to 8) in both groups (p = 0.95). The median satisfaction score was 9 (4 to 10) in the high-flex group and 8 (0 to 10) in the gender-specific group (p = 0.98). The median ‘feel’ score was 9 (3 to 10) in the high-flex group and 8 (0 to 10) in the gender-specific group (p = 0.66). Gait analysis showed no statistically significant differences between the two prosthetic designs in any kinematic, kinetic or temporospatial parameters.

Both designs produced good clinical results with significant improvements in several gait parameters without evidence of any advantage in the gender-specific design.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose.

A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001).

3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1223 - 1231
1 Sep 2011
Babazadeh S Dowsey MM Swan JD Stoney JD Choong PFM

The role of computer-assisted surgery in maintaining the level of the joint in primary knee joint replacement (TKR) has not been well defined. We undertook a blinded randomised controlled trial comparing joint-line maintenance, functional outcomes, and quality-of-life outcomes between patients undergoing computer-assisted and conventional TKR. A total of 115 patients were randomised (computer-assisted, n = 55; conventional, n = 60).

Two years post-operatively no significant correlation was found between computer-assisted and conventional surgery in terms of maintaining the joint line. Those TKRs where the joint line was depressed post-operatively improved the least in terms of functional scores. No difference was detected in terms of quality-of-life outcomes. Change in joint line was found to be related to change in alignment. Change in alignment significantly affects change in joint line and functional scores.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1178 - 1182
1 Sep 2009
Hakki S Coleman S Saleh K Bilotta VJ Hakki A

The requirement for release of collateral ligaments to achieve a stable, balanced total knee replacement has been reported to arise in about 50% to 100% of procedures. This wide range reflects a lack of standardised quantitative indicators to determine the necessity for a release. Using recent advances in computerised navigation, we describe two navigational predictors which provide quantitative measures that can be used to identify the need for release. The first was the ability to restore the mechanical axis before any bone resection was performed and the second was the discrepancy in the measured medial and lateral joint spaces after the tibial osteotomy, but before any femoral resection.

These predictors showed a significant association with the need for collateral ligament release (p < 0.001). The first predictor using the knee stress test in extension showed a sensitivity of 100% and a specificity of 98% and the second, the difference between medial and lateral gaps in millimetres, a sensitivity of 83% and a specificity of 95%. The use of the two navigational predictors meant that only ten of the 93 patients required collateral ligament release to achieve a stable, neutral knee.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1441 - 1445
1 Nov 2008
Hadjicostas PT Soucacos PN Thielemann FW

We describe the mid-term results of a prospective study of total knee replacement in severe valgus knees using an osteotomy of the lateral femoral condyle and computer navigation. There were 15 knees with a mean valgus deformity of 21° (17° to 27°) and a mean follow-up of 28 months (24 to 60). A cemented, non-constrained fixed bearing, posterior-cruciate-retaining knee prosthesis of the same design was used in all cases (Columbus-B. Braun; Aesculap, Tuttlingen, Germany).

All the knees were corrected to a mean of 0.5° of valgus (0° to 2°). Flexion of the knee had been limited to a mean of 85° (75° to 110°) pre-operatively and improved to a mean of 105° (90° to 130°) after operation. The mean Knee Society score improved from 37 (30 to 44) to 90 points (86 to 94).

Osteotomy of the lateral femoral condyle combined with computer-assisted surgery gave an excellent mid-term outcome in patients undergoing total knee replacement in the presence of severe valgus deformity.