The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.
Instruments used in surgery which rotate or vibrate at a high frequency can produce potentially contaminated aerosols. Such tools are in use in cemented hip revision arthroplasties. We aimed to measure the extent of the environmental and body contamination caused by an ultrasound device and a high-speed cutter. On a human cadaver we carried out a complete surgical procedure including draping and simulated blood flow contaminated with Environmental contamination was present in an area of 6 x 8 m for both devices. The concentration of contamination was lower for the ultrasound device. Both the ultrasound and the high-speed cutter contaminated all members of the surgical team. The devices tested produced aerosols which covered the whole operating theatre and all personnel present during the procedure. In contaminated and infected patients, infectious agents may be present in these aerosols. We therefore recommend the introduction of effective measures to control infection and thorough disinfection of the operating theatre after such procedures.
We studied various aspects of graft impaction and penetration of cement in an experimental model. Cancellous bone was removed proximally and local diaphyseal lytic defects were simulated in six human cadaver femora. After impaction grafting the specimens were sectioned and prepared for histomorphometric analysis. The porosity of the graft was lowest in Gruen zone 4 (52%) and highest in Gruen zone 1 (76%). At the levels of Gruen zones 6 and 2 the entire cross-section was almost filled with cement. Cement sometimes reached the endosteal surface in other Gruen zones. The mean peak impaction forces exerted with the impactors were negatively correlated with the porosity of the graft.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
We investigated the implant-bone interface around one design of femoral stem, proximally coated with either a plasma-sprayed porous coating (plain porous) or a hydroxyapatite porous coating (porous HA), or which had been grit-blasted (Interlok). Of 165 patients implanted with a Bimetric hip hemiarthroplasty (Biomet, Bridgend, UK) specimens were retrieved from 58 at post-mortem. We estimated ingrowth and attachment of bone to the surface of the implant in 21 of these, eight plain porous, seven porous HA and six Interlok, using image analysis and light morphometric techniques. The amount of HA coating was also quantified. There was significantly more ingrowth (p = 0.012) and attachment of bone (p >
0.05) to the porous HA surface (mean bone ingrowth 29.093 ± 2.019%; mean bone attachment 37.287 ± 2.489%) than to the plain porous surface (mean bone ingrowth 21.762 ± 2.068%; mean bone attachment 18.9411 ± 1.971%). There was no significant difference in attachment between the plain porous and Interlok surfaces. Bone grew more evenly over the surface of the HA coating whereas on the porous surface, bone ingrowth and attachment occurred more on the distal and medial parts of the coated surface. No significant differences in the volume of HA were found with the passage of time. This study shows that HA coating increases the amount of ingrowth and attachment of bone and leads to a more even distribution of bone over the surface of the implant. This may have implications in reducing stress shielding and limiting osteolysis induced by wear particles.
Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments
(5 mg) were inserted at ten intervals during the five million cycle
(5 Mc) test. Objectives
Methods
Matrix metalloproteinases (MMPs) may have a role in the process of aseptic loosening. Doxycycline has been shown to inhibit MMPs. Our aim was to investigate the potential pharmacological effect of doxycycline on aseptic loosening. We used radiolabelled mouse calvariae cultured with human interface membrane cells from aseptically loosened hips. Bone resorption was confirmed in this model. The effect of doxycycline was assessed by culturing dead radiolabelled bone discs with cells from the interface membrane with doxycycline. The control group consisted of the same culture system without doxycycline. Supernatant 45calcium and the total 45calcium remaining in the bone discs at the completion of the culture were used to measure osteolysis. We found that doxycycline can inhibit osteolysis at the interface membrane of aseptically loosened hips. This may have therapeutic implications for the treatment of patients with aseptic loosening of total joint replacements.
We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene
Objectives. Taper junctions between modular
Objectives. Our study aimed to examine not only the incidence but also the
impact of noise from two types of total hip replacement articulations:
ceramic-on-ceramic and ceramic-on-polyethylene. . Methods . We performed a case-controlled study comparing subjective and
objective questionnaire scores of patients receiving a ceramic-on-ceramic
or a ceramic-on-polyethylene total hip replacement by a single surgeon. Results. There was a threefold higher incidence of noise from patients
in the ceramic-on-ceramic group compared with the control group.
The impact of this noise was significant for patients both subjectively
and objectively. Conclusions. This study reports a high patient impact of noise from ceramic-on-ceramic
total
The outcome of a cemented
The complications of impaction bone grafting in revision
We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement. Cement mantles were moulded in a manner simulating clinical practice for cemented
We studied the effect of the surface finish of the stem on the transfer of load in the proximal femur in a sheep model of cemented
We measured the levels of cobalt and chromium in the serum in three groups of patients after uncemented porous-coated arthroplasty. Group 1 consisted of 14 consecutive patients undergoing revision for aseptic loosening. Group 2 comprised 14 matched patients in whom the arthroplasty was stable and group 3 was 14 similarly matched patients with arthritis awaiting
Our aim was to analyse the influence of the size, shape and number of particles on the pathogenesis of osteolysis. We obtained peri-implant tissues from 18 patients having revision surgery for aseptically loosened Freeman total knee replacements (10), Charnley total hip replacements (3) and Imperial College/London Hospital double-cup surface
We studied the pattern of . 99m. Tc-methylene diphosphonate uptake around uncemented femoral components in 44 asymptomatic
We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of the antibiotics from the blocks. The bactericidal concentration of ISP from A-W GC was maintained for more than 42 days, but that from HA decreased to below the detection limit after 28 days. The concentrations of CMZ from both materials were lower than those of ISP. An in vivo study using rabbit femora showed that an osseous concentration of ISP was maintained at eight weeks after implantation. Osteoconduction of the A-W GC block was good. Four patients with infected
Metal-on-metal (MOM) bearings for
The fatigue failure of bone cement, leading to loosening of the stem, is likely to be one mode of failure of cemented total hip replacements. There is strong evidence that cracks in the cement are initiated at voids which act as stress risers, particularly at the cement-stem interface. The preferential formation of voids at this site results from shrinkage during polymerisation and the initiation of this process at the warmer cement-bone interface, which causes bone cement to shrink away from the stem. A reversal of the direction of polymerisation would shrink the cement on to the stem and reduce or eliminate the formation of voids at this interface. We have investigated this by implanting hip prostheses, at room temperature or preheated to 44°C, into human cadaver femora kept at 37°C. Two types of bone cement were either hand-mixed or vacuum-mixed before implantation. We found that the area of porosity at the cement-stem interface was dramatically reduced by preheating the stem and that the preheating temperature of 44°C determined by computer analysis of transient heat transfer was the minimum required to induce initial polymerisation at the cement-stem interface. Temperature measurements taken during these experiments in vitro showed that preheating of the stem caused a negligible increase in the temperature of the bone. Reduction of porosity at the cement-stem interface could significantly increase the life of
Periprosthetic osteolysis is a major cause of aseptic loosening in artificial joint replacement. It is assumed to occur in conjunction with the activation of macrophages. We have shown in vitro that human osteoblast-like cells, isolated from bone specimens obtained from patients undergoing
We examined the roles of methylmethacrylate (MMA) monomer and cementing technique in the formation, and haemodynamic outcome, of pulmonary fat emboli. The preparation of the femoral canal and the cementing technique were studied in four groups of adult dogs as follows: control (no preparation); lavage; cement pressurisation; and cement pressurisation after lavage. We measured the intramedullary pressure, pulmonary artery pressure (PAP), pulmonary capillary wedge pressure and bilateral femoral vein levels of triglyceride, cholesterol and MMA monomer at rest and after reaming, lavage, and cementing. Femoral vein triglyceride and cholesterol levels did not vary significantly from resting levels despite significant elevations in intramedullary pressure with reaming, lavage and cementing (p = 0.001). PAP was seen to rise significantly with reaming (p = 0.0038), lavage (p = 0.0031), cementing (p = 0.0024) and cementing after lavage (p = 0.0028) while the pulmonary capillary wedge pressure remained unchanged. MMA monomer was detected in femoral vein samples when cement pressurisation was used. Intramedullary lavage before cementing had no significant effect on the MMA level. Haemodynamic evidence of pulmonary embolism was noted with reaming and intramedullary canal preparation, irrespective of the presence of MMA monomer. We found no relationship between MMA monomer level and intramedullary pressure, PAP or pulmonary capillary wedge pressure. Our findings suggest that the presence of MMA monomer in femoral venous blood has no effect on the formation of fat emboli or their pulmonary haemodynamic outcome during cemented
Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.Objectives
Methods
Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.Objectives
Methods
Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.Objectives
Methods
Acetabular retractors have been implicated in damage to the femoral
and obturator nerves during total hip replacement. The aim of this
study was to determine the anatomical relationship between retractor
placement and these nerves. A posterior approach to the hip was carried out in six fresh
cadaveric half pelves. Large Hohmann acetabular retractors were
placed anteriorly, over the acetabular lip, and inferiorly, and
their relationship to the femoral and obturator nerves was examined.Objectives
Methods
Osteoporosis and abnormal bone metabolism may prove to be significant
factors influencing the outcome of arthroplasty surgery, predisposing
to complications of aseptic loosening and peri-prosthetic fracture.
We aimed to investigate baseline bone mineral density (BMD) and
bone turnover in patients about to undergo arthroplasty of the hip
and knee. We prospectively measured bone mineral density of the hip and
lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans
in a cohort of 194 patients awaiting hip or knee arthroplasty. We
also assessed bone turnover using urinary deoxypyridinoline (DPD),
a type I collagen crosslink, normalised to creatinine.Aims
Methods
To review the current best surgical practice and detail a multi-disciplinary
approach that could further reduce joint replacement infection. Review of relevant literature indexed in PubMed.Objectives
Methods
The period of post-operative treatment before surgical wounds
are completely closed remains a key window, during which one can
apply new technologies that can minimise complications. One such
technology is the use of negative pressure wound therapy to manage
and accelerate healing of the closed incisional wound (incisional
NPWT). We undertook a literature review of this emerging indication
to identify evidence within orthopaedic surgery and other surgical
disciplines. Literature that supports our current understanding
of the mechanisms of action was also reviewed in detail. Objectives
Methods
We aimed first to summarise minimal clinically important differences
(MCIDs) after total hip (THR) or knee replacement (TKR) in health-related
quality of life (HRQoL), measured using the Short-Form 36 (SF-36).
Secondly, we aimed to improve the precision of MCID estimates by
means of meta-analysis. We conducted a systematic review of English and non-English articles
using MEDLINE, the Cochrane Controlled Trials Register (1960–2011),
EMBASE (1991–2011), Web of Science, Academic Search Premier and
Science Direct. Bibliographies of included studies were searched
in order to find additional studies. Search terms included MCID
or minimal clinically important change, THR or TKR and Short-Form
36. We included longitudinal studies that estimated MCID of SF-36
after THR or TKR.Objectives
Methods
Electronic forms of data collection have gained interest in recent
years. In orthopaedics, little is known about patient preference
regarding pen-and-paper or electronic questionnaires. We aimed to
determine whether patients undergoing total hip (THR) or total knee
replacement (TKR) prefer pen-and-paper or electronic questionnaires
and to identify variables that predict preference for electronic
questionnaires. We asked patients who participated in a multi-centre cohort study
investigating improvement in health-related quality of life (HRQoL)
after THR and TKR using pen-and-paper questionnaires, which mode
of questionnaire they preferred. Patient age, gender, highest completed
level of schooling, body mass index (BMI), comorbidities, indication
for joint replacement and pre-operative HRQoL were compared between
the groups preferring different modes of questionnaire. We then
performed logistic regression analyses to investigate which variables
independently predicted preference of electronic questionnaires.Objectives
Methods
Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.
In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two. Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.
Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component. A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points. The difference between the surgeons was found to be highly significant (p <
0.001). The variation was significantly larger for anteversion (
We investigated the antibiotic concentration in fresh-frozen femoral head allografts harvested from two groups of living donors. Ten samples were collected from patients with osteoarthritis of the hip and ten from those with a fracture of the neck of the femur scheduled for primary arthroplasty. Cefazolin (1 g) was administered as a pre-operative prophylactic antibiotic. After storage at −80°C for two weeks the pattern of release of cefazolin from morsellised femoral heads was evaluated by an We concluded that allografts of morsellised bone from the femoral head harvested from patients undergoing arthroplasty of the hip contained cefazolin, which had been administered pre-operatively and they exhibited inhibitory effects against bacteria
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.
The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge. Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°; internal/external rotation 0° to 30°).
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.