Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in
Aims. The aims of this study were to develop an in
Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in
Objectives. Pseudotumours (abnormal peri-prosthetic soft-tissue reactions)
following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have
been associated with elevated metal ion levels, suggesting that
excessive wear may occur due to edge-loading of these MoM implants.
This study aimed to quantify in
Objective. In ex
At yearly intervals we compared the radiological wear characteristics of 81 alumina ceramic femoral heads with a well-matched group of 43 cobalt-chrome femoral heads. Using a computer-assisted measurement system we assessed two-dimensional penetration of the head into the polyethylene liner. We used linear regression analysis of temporal data of the penetration of the head to calculate the true rates of polyethylene wear for both groups. At a mean of seven years the true rate of wear of the ceramic group was slightly greater (0.09 mm/year, SD 0.07) than that of the cobalt-chrome group (0.07 mm/year, SD 0.04). Despite the numerous theoretical advantages of ceramic over cobalt-chrome femoral heads, the wear performance in
Injuries to the sciatic nerve are an occasional complication of surgery to the hip and acetabulum, and traction is frequently the causative mechanism. In vitro and animal experiments have shown that increased tensile strain on peripheral nerves, when applied for prolonged periods, impairs nerve function. We have used video-extensometry to measure strain on the human sciatic nerve during total hip replacement (THR). Ten consecutive patients with a mean age of 72 years undergoing primary THR by the posterior approach were recruited, and strains in the sciatic nerve were measured in different combinations of flexion and extension of the hip and knee, before dislocation of the hip. Significant increases (p = 0.02) in strain in the sciatic nerve were observed in flexion of the hip and extension of the knee. The mean increase was 26% (19% to 30%). In animal studies increases of this magnitude have been shown to impair electrophysiological function in peripheral nerves. Our results suggest that excessive flexion of the hip and extension of the knee should be avoided during THR.
Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in
Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex
Aims. To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods. In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In
Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. Methods. The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in
Aims. We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm.Aims
Methods
The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.Aims
Methods
Aims. To compare the in
The aims of this study were to determine the incidence and factors for developing periprosthetic joint infection (PJI) following hemiarthroplasty (HA) for hip fracture, and to evaluate treatment outcome and identify factors associated with treatment outcome. A retrospective review was performed of consecutive patients treated for HA PJI at a tertiary referral centre with a mean 4.5 years’ follow-up (1.6 weeks to 12.9 years). Surgeries performed included debridement, antibiotics, and implant retention (DAIR) and single-stage revision. The effect of different factors on developing infection and treatment outcome was determined.Aims
Methods
Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis. This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using dual energy X-ray absorptiometry (DXA) scans and the medications used to treat osteoporosis at the time of admission. We also assessed the following osteoporosis-related biomarkers: tartrate-resistant acid phosphatase 5b (TRACP-5b); total procollagen type 1 amino-terminal propeptide (total P1NP); intact parathyroid hormone; and homocysteine.Aims
Methods
Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.Aims
Methods
Aims. There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs. Patients and Methods. We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling. Results. A total of 95 Exeter MoP and 249 MoM THAs were examined. The median volumetric loss from the MoM cohort was over four times larger than that from the MoP cohort (1.01 mm. 3. vs 0.23 mm. 3. , p < 0.001), despite a significantly shorter median period in
This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA). Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.Aims
Methods
Avascular femoral head necrosis in the context of gymnastics is a rare but serious complication, appearing similar to Perthes’ disease but occurring later during adolescence. Based on 3D CT animations, we propose repetitive impact between the main supplying vessels on the posterolateral femoral neck and the posterior acetabular wall in hyperextension and external rotation as a possible cause of direct vascular damage, and subsequent femoral head necrosis in three adolescent female gymnasts we are reporting on. Outcome of hip-preserving head reduction osteotomy combined with periacetabular osteotomy was good in one and moderate in the other up to three years after surgery; based on the pronounced hip destruction, the third received initially a total hip arthroplasty.Aims
Methods
Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems. We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.Aims
Methods
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.Aims
Methods
Aims. The increased in
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).Aims
Methods
In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.Aims
Methods
The aim of our study was to investigate the effect of asymmetric crosslinked polyethylene liner use on the risk of revision of cementless and hybrid total hip arthroplasties (THAs). We undertook a registry study combining the National Joint Registry dataset with polyethylene manufacturing characteristics as supplied by the manufacturers. The primary endpoint was revision for any reason. We performed further analyses on other reasons including instability, aseptic loosening, wear, and liner dissociation. The primary analytic approach was Cox proportional hazard regression.Aims
Methods
We report the five-year outcome of a randomised
controlled trial which used radiostereometric analysis (RSA) to assess
the influence of surface oxidised zirconium (OxZr, Oxinium) on polyethylene
wear in
Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy.Aims
Methods
Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Aims
Methods
Rotational acetabular osteotomy (RAO) has been reported to be effective in improving symptoms and preventing osteoarthritis (OA) progression in patients with mild to severe develomental dysplasia of the hip (DDH). However, some patients develop secondary OA even when the preoperative joint space is normal; determining who will progress to OA is difficult. We evaluated whether the preoperative cartilage condition may predict OA progression following surgery using T2 mapping MRI. We reviewed 61 hips with early-stage OA in 61 patients who underwent RAO for DDH. They underwent preoperative and five-year postoperative radiological analysis of the hip. Those with a joint space narrowing of more than 1 mm were considered to have 'OA progression'. Preoperative assessment of articular cartilage was also performed using 3T MRI with the T2 mapping technique. The region of interest was defined as the weightbearing portion of the acetabulum and femoral head.Aims
Methods
Tribocorrosion at the head–neck taper interface
– so-called ‘taperosis’ – may be a source of metal ions and particulate
debris in metal-on-polyethylene total hip arthroplasty (THA). We examined the effect of femoral head length on fretting and
corrosion in retrieved head–neck tapers in
The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.Aims
Methods
The Articular Surface Replacement (ASR) hip resurfacing arthroplasty has a failure rate of 12.0% at five years, compared with 4.3% for the Birmingham Hip Resurfacing (BHR). We analysed 66 ASR and 64 BHR explanted metal-on-metal hip replacements with the aim of understanding their mechanisms of failure. We measured the linear wear rates of the acetabular and femoral components and analysed the clinical cause of failure, pre-revision blood metal ion levels and orientation of the acetabular component. There was no significant difference in metal ion levels (chromium, p = 0.82; cobalt, p = 0.40) or head wear rate (p = 0.14) between the two groups. The ASR had a significantly increased rate of wear of the acetabular component (p = 0.03) and a significantly increased occurrence of edge loading (p <
0.005), which can be attributed to differences in design between the ASR and BHR. The effects of differences in design on the in
The presence of pseudotumours, which are soft-tissue masses relating to the hip, after metal-on-metal hip resurfacing arthroplasty has been associated with elevated levels of metal ions in serum, suggesting that pseudotumours occur when there is increased wear. We aimed to quantify the wear in
Alumina–alumina bearings are among the most resistant
to wear in total hip replacement. Examination of their surfaces
is one way of comparing damage caused by wear of hip joints simulated in
vitro to that seen in explanted bearings. The aim of this
study was to determine whether second-generation ceramic bearings
exhibited a better pattern of wear than those reported in the literature
for first-generation bearings. We considered both macro- and microscopic
findings. We found that long-term alumina wear in association with a loose
acetabular component could be categorised into three groups. Of
20 specimens, four had ‘low wear’, eight ‘crescent wear’ and eight
‘severe wear’, which was characterised by a change in the physical
shape of the bearing and a loss of volume. This suggests that the
wear in alumina–alumina bearings in association with a loose acetabular
component may be variable in pattern, and may explain, in part,
why the wear of a ceramic head in
We have evaluated the in
This is a longitudinal study of the daily urinary output and the concentrations in whole blood of cobalt and chromium in patients with metal-on-metal resurfacings over a period of four years. Twelve-hour urine collections and whole blood specimens were collected before and periodically after a Birmingham hip resurfacing in 26 patients. All ion analyses were carried out using a high-resolution inductively-coupled plasma mass spectrometer. Clinical and radiological assessment, hip function scoring and activity level assessment revealed excellent hip function. There was a significant early increase in urinary metal output, reaching a peak at six months for cobalt and one year for chromium post-operatively. There was thereafter a steady decrease in the median urinary output of cobalt over the following three years, although the differences are not statistically significant. The mean whole blood levels of cobalt and chromium also showed a significant increase between the pre-operative and one-year post-operative periods. The blood levels then decreased to a lower level at four years, compared with the one-year levels. This late reduction was statistically significant for chromium but not for cobalt. The effects of systemic metal ion exposure in patients with metal-on-metal resurfacing arthroplasties continue to be a matter of concern. The levels in this study provide a baseline against which the in
The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour.Aims
Methods
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
The gluteus minimus (GMin) and gluteus medius (GMed) have unique structural and functional segments that may be affected to varying degrees, by end-stage osteoarthritis (OA) and normal ageing. We used data from patients with end-stage OA and matched healthy controls to 1) quantify the atrophy of the GMin and GMed in the two groups and 2) describe the distinct patterns of the fatty infiltration in the different segments of the GMin and GMed in the two groups. A total of 39 patients with end-stage OA and 12 age- and sex frequency-matched healthy controls were prospectively enrolled in the study. Fatty infiltration within the different segments of the GMin and the GMed was assessed on MRI according to the semiquantitative classification system of Goutallier and normalized cross-sectional areas were measured.Aims
Methods
Although alumina has been used in orthopaedic surgery since the 1970s, the long-term clinical results of zirconia have not been well documented in
In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an in vitro simulation whether the use of a pneumatic hammer leads to higher primary stability than manual impaction. Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. From these measurements bulk density, contact stiffness, impaction hardness and penetration resistance were calculated for different durations of impaction. We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture in
The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components. A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired Aims
Methods
Vitamin E-infused highly crosslinked polyethylene (VEPE) has been introduced into total hip arthroplasty (THA) with the aim of further improving the wear characteristics of moderately and highly crosslinked polyethylenes (ModXLPE and HXLPE). There are few studies analyzing the outcomes of vitamin E-infused components in cemented arthroplasty, though early acetabular component migration has been reported. The aim of this study was to measure five-year polyethylene wear and acetabular component stability of a cemented VEPE acetabular component compared with a ModXLPE cemented acetabular component. In a prospective randomized controlled trial (RCT), we assessed polyethylene wear and acetabular component stability (primary outcome) with radiostereometric analysis (RSA) in 68 patients with reverse hybrid THA at five years follow-up. Patients were randomized to either a VEPE or a ModXLPE cemented acetabular component.Aims
Methods
This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.Aims
Methods