Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1426 - 1430
1 Dec 2024
Warne CN Ryan S Yu E Osmon DR Berry DJ Abdel MP

Aims

Cutibacterium acnes (C. acnes; previously known as Propionibacterium acnes or P. acnes) periprosthetic hip and knee infections are under-reported. While culture contamination with C. acnes occurs, true infections are important to recognize and treat. We sought to describe the demographics and treatment outcomes of patients with C. acnes periprosthetic joint infections (PJIs) of the hip and knee.

Methods

Patients with C. acnes PJI between January 2005 and December 2018 were retrospectively reviewed utilizing the institutional total joint registry. Patients with monomicrobial PJI and two or more positive cultures were considered to have true C. acnes PJI. Patients with polymicrobial infection or with only one positive culture were excluded. This resulted in 35 PJIs (21 hips and 14 knees); the patients’ mean age was 63 years (35 to 84) and 15 (43%) were female. Mean follow-up was five years (1 to 14).


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 497 - 501
1 Apr 2014
Banche G Allizond V Bracco P Bistolfi A Boffano M Cimino A Brach del Prever EM Cuffini AM

We have assessed the different adhesive properties of some of the most common bacteria associated with periprosthetic joint infection on various types of ultra high molecular Weight Polyethylene (UHMWPE). Quantitative in vitro analysis of the adhesion of biofilm producing strains of Staphylococcus aureus and Escherichia coli to physically and chemically characterised standard UHMWPE (PE), vitamin E blended UHMWPE (VE-PE) and oxidised UHMWPE (OX-PE) was performed using a sonication protocol. A significant decreased bacterial adhesion was registered for both strains on VE-PE, in comparison with that observed on PE, within 48 hours of observation (S. aureus p = 0.024 and E. coli p = 0.008). Since Vitamin E reduces bacterial adhesive ability, VE-stabilised UHMWPE could be valuable in joint replacement by presenting excellent mechanical properties, while reducing bacterial adhesiveness.

Cite this article: Bone Joint J 2014;96-B:497–501.