We retrospectively reviewed 44 consecutive patients
(50 hips) who underwent acetabular re-revision after a failed previous
revision that had been performed using structural or morcellised
allograft bone, with a cage or ring for
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods
Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).Aims
Patients and Methods
The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction. Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using impaction bone grafting with frozen, irradiated, and morsellized femoral heads and a cemented acetabular component. A total of 55 men and 55 women with a mean age of 64.3 years (26 to 97) at the time of revision surgery are included in this study.Aims
Patients and Methods
Revision total hip replacement (THR) for young
patients is challenging because of technical complexity and the potential
need for subsequent further revisions. We have assessed the survivorship,
functional outcome and complications of this procedure in patients
aged <
50 years through a large longitudinal series with consistent treatment
algorithms. Of 132 consecutive patients (181 hips) who underwent
revision THR, 102 patients (151 hips) with a mean age of 43 years
(22 to 50) were reviewed at a mean follow-up of 11 years (2 to 26)
post-operatively. We attempted to restore bone stock with allograft
where indicated. Using further revision for any reason as an end point,
the survival of the acetabular component was 71% ( This overall perspective on the mid- to long-term results is
valuable when advising young patients on the prospects of revision
surgery at the time of primary replacement. Cite this article:
This review summarises the technique of impaction
grafting with mesh augmentation for the treatment of uncontained
acetabular defects in revision hip arthroplasty. The ideal acetabular revision should restore bone stock, use
a small socket in the near-anatomic position, and provide durable
fixation. Impaction bone grafting, which has been in use for over
40 years, offers the ability to achieve these goals in uncontained
defects. The precepts of modern, revision impaction grafting are
that the segmental or cavitary defects must be supported with a
mesh; the contained cavity is filled with vigorously impacted morselised
fresh-frozen allograft; and finally, acrylic cement is used to stabilise
the graft and provide rigid, long-lasting fixation of the revised
acetabular component. Favourable results have been published with this technique. While
having its limitations, it is a viable option to address large acetabular
defects in revision arthroplasty. Cite this article:
An uncemented hemispherical acetabular component
is the mainstay of acetabular revision and gives excellent long-term
results. Occasionally, the degree of acetabular bone loss means that a
hemispherical component will be unstable when sited in the correct
anatomical location or there is minimal bleeding host bone left
for biological fixation. On these occasions an alternative method
of reconstruction has to be used. A major column structural allograft has been shown to restore
the deficient bone stock to some degree, but it needs to be off-loaded
with a reconstruction cage to prevent collapse of the graft. The
use of porous metal augments is a promising method of overcoming
some of the problems associated with structural allograft. If the defect
is large, the augment needs to be protected by a cage to allow ingrowth
to occur. Cup-cage reconstruction is an effective method of treating
chronic pelvic discontinuity and large contained or uncontained
bone defects. This paper presents the indications, surgical techniques and
outcomes of various methods which use acetabular reconstruction
cages for revision total hip arthroplasty. Cite this article:
We evaluated the use of a stemmed acetabular component in the treatment of severe acetabular deficiency during revision and complex primary total hip arthroplasty. There were 31 hips of which 24 were revisions (20 for aseptic loosening, four for infection) and the remainder were complex primary arthroplasties. At a mean follow-up of 10.7 years (6 to 12.8), no component had been revised for aseptic loosening; one patient had undergone a revision of the polyethylene liner for wear. There was one failure because of infection. At the latest follow-up, the cumulative survival rate for aseptic loosening, with revision being the end-point, was 100%; for radiographic loosening it was 92% and for infection and radiographic loosening it was 88%. These results justify the continued use of this stemmed component for the reconstruction of severe acetabular deficiency.
Our aim was to determine if the height of the cup, lateralisation or the abduction angle correlated with functional outcome or survivorship in revision total hip replacement in patients with a previous diagnosis of developmental dysplasia of the hip. A retrospective investigation of 51 patients (63 hips) who had undergone revision total hip replacement was performed. The mean duration of follow-up was 119 months. Forty-one patients (52 hips) were available for both determination of functional outcome and survivorship analysis. Ten patients (11 hips) were only available for survivorship analysis. The height of the cup was found to have a statistically significant correlation with functional outcome and a high hip centre correlated with a worse outcome score. Patients with a hip centre of less than 3.5 cm above the anatomical level had a statistically better survivorship of the cup than those with centres higher than this. Restoration of the height of the centre of the hip to as near the anatomical position as possible improved functional outcome and survivorship of the cup.
The ‘jumbo’ acetabular component is now commonly
used in acetabular revision surgery where there is extensive bone
loss. It offers high surface contact, permits weight bearing over
a large area of the pelvis, the need for bone grafting is reduced
and it is usually possible to restore centre of rotation of the
hip. Disadvantages of its use include a technique in which bone
structure may not be restored, a risk of excessive posterior bone
loss during reaming, an obligation to employ screw fixation, limited
bone ingrowth with late failure and high hip centre, leading to increased
risk of dislocation. Contraindications include unaddressed pelvic
dissociation, inability to implant the component with a rim fit,
and an inability to achieve screw fixation. Use in acetabulae with
<
50% bone stock has also been questioned. Published results
have been encouraging in the first decade, with late failures predominantly because
of polyethylene wear and aseptic loosening. Dislocation is the most
common complication of jumbo acetabular revisions, with an incidence
of approximately 10%, and often mandates revision. Based on published results,
a hemispherical component with an enhanced porous coating, highly
cross-linked polyethylene, and a large femoral head appears to represent
the optimum tribology for jumbo acetabular revisions. Cite this article:
Between 1990 and 2000, 123 hips in 110 patients were reconstructed for aseptic loosening using impaction bone grafting with frozen, irradiated, morsellised femoral heads and cemented acetabular components. This series was reported previously at a mean follow-up of five years. We have extended this follow-up and now describe the outcome of 86 hips in 74 patients at a mean of ten years. There have been 19 revisions, comprising nine for infection, seven for aseptic loosening and three for dislocation. In surviving acetabular reconstructions, union of the graft had occurred in 64 of 67 hips (95.5%). Survival analysis for all indications at ten years was 83.3% (95% confidence interval (CI) 68 to 89) and 71.3% (95% CI 58 to 84) at 15 years. Acetabular reconstruction using irradiated allograft and a cemented acetabular component is an effective method of reconstruction, providing results in the medium- to long-term comparable with those of reported series where non-irradiated freshly-frozen bone was used.
We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
Pre-operative planning for total hip replacement
(THR) is challenging in hips with severe acetabular deformities, including
those with a hypoplastic acetabulum or severe defects and in the
presence of arthrodesis or ankylosis. We evaluated whether a Rapid
Prototype (RP) model, which is a life-sized reproduction based on
three-dimensional CT scans, can determine the feasibility of THR
and provide information about the size and position of the acetabular component
in severe acetabular deformities. THR was planned using an RP model
in 21 complex hips in five men (five hips) and 16 women (16 hips)
with a mean age of 47.7 years (24 to 70) at operation. An acetabular
component was implanted successfully and THR completed in all hips.
The acetabular component used was within 2 mm of the predicted size
in 17 hips (80.9%). All of the acetabular components and femoral
stems had radiological evidence of bone ingrowth and stability at
the final follow-up, without any detectable wear or peri-prosthetic
osteolysis. The RP model allowed a simulated procedure pre-operatively
and was helpful in determining the feasibility of THR pre-operatively,
and to decide on implant type, size and position in complex THRs. Cite this article:
We present an update of the clinical and radiological results of 62 consecutive acetabular revisions using impacted morsellised cancellous bone grafts and a cemented acetabular component in 58 patients, at a mean follow-up of 22.2 years (20 to 25). The Kaplan-Meier survivorship for the acetabular component with revision for any reason as the endpoint was 75% at 20 years (95% confidence interval (CI) 62 to 88) when 16 hips were at risk. Excluding two revisions for septic loosening at three and six years, the survivorship at 20 years was 79% (95% CI 67 to 93). With further exclusions of one revision of a well-fixed acetabular component after 12 years during a femoral revision and two after 17 years for wear of the acetabular component, the survivorship for aseptic loosening was 87% at 20 years (95% CI 76 to 97). At the final review 14 of the 16 surviving hips had radiographs available. There was one additional case of radiological loosening and four acetabular reconstructions showed progressive radiolucent lines in one or two zones. Acetabular revision using impacted large morsellised bone chips (0.5 cm to 1 cm in diameter) and a cemented acetabular component remains a reliable technique for reconstruction, even when assessed at more than 20 years after surgery.
Revision arthroplasty after infection can often be complicated by both extensive bone loss and a relatively high rate of re-infection. Using allograft to address the bone loss in such patients is controversial because of the perceived risk of bacterial infection from the use of avascular graft material. We describe 12 two-stage revisions for infection in which segmental allografts were loaded with antibiotics using iontophoresis, a technique using an electrical potential to drive ionised antibiotics into cortical bone. Iontophoresis produced high levels of antibiotic in the allograft, which eluted into the surrounding tissues. We postulate that this offers protection from infection in the high-risk peri-operative period. None of the 12 patients who had two-stage revision with iontophoresed allografts had further infection after a mean period of 47 months (14 to 78).