Objectives . The objective of this study is to determine an optimal antibiotic-loaded
bone cement (ALBC) for infection prophylaxis in total joint arthroplasty
(TJA). Methods. We evaluated the antibacterial effects of polymethylmethacrylate
(PMMA)
Objectives. The objective of this study was to compare the elution characteristics,
antimicrobial activity and mechanical properties of antibiotic-loaded
bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic
with inert filler (xylitol), or liquid antibiotic, particularly focusing
on vancomycin and amphotericin B. Methods. Cement specimens loaded with 2 g of vancomycin or amphotericin
B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol
(xylitol group) or 12 ml of antibiotic solution containing 2 g of
antibiotic (liquid group) were tested. Results. Vancomycin elution was enhanced by 234% in the liquid group and
by 12% in the xylitol group compared with the powder group. Amphotericin
B elution was enhanced by 265% in the liquid group and by 65% in
the xylitol group compared with the powder group. Based on the disk-diffusion
assay, the eluate samples of vancomycin-loaded ALBC of the liquid group
exhibited a significantly larger inhibitory zone than samples of
the powder or the xylitol group. Regarding the ALBCs loaded with
amphotericin B, only the eluate samples of the liquid group exhibited
a clear inhibitory zone, which was not observed in either the xylitol
or the powder groups. The ultimate compressive strength was significantly
reduced in specimens containing liquid antibiotics. Conclusions. Adding vancomycin or amphotericin B antibiotic powder in distilled
water before mixing with
We used a rat model in vivo to study the effects of particulate
The fatigue failure of
A heavy infiltrate of foreign-body macrophages is commonly seen in the fibrous membrane which surrounds an aseptically loose cemented implant. This is in response to particles of polymethylmethacrylate (PMMA)
Objectives. Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. Methods. In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing
We have investigated whether the particle-stimulated release of inflammatory cytokines from human primary macrophages in vitro was dependent upon the type of
We have compared the rates of infection and resistance in an animal model of an orthopaedic procedure which was contaminated with a low-dose inoculum of Staphylococcus epidermidis. We randomised 44 Sprague-Dawley rats to have
We have developed a bioactive
The outcome of a cemented hip arthroplasty is partly dependent on the type of cement which is used. The production of an interface gap between the stem and the cement mantle as a result of shrinkage of the cement, may be a factor involved. Palacos R, Palacos LV (both with gentamicin), CMW 1, CMW 2, CMW Endurance (CMWE) and Simplex were prepared under vacuum and allowed to cure overnight in similar cylinders. The next day this volume was determined by the displacement of water. Shrinkage varied between 3.82% and 7.08% with CMWE having the lowest and Palacos LV the highest. This could be a factor to consider when choosing a cement for a shape-closed stem.
Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty.
The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. Objectives
Methods
We investigated the effect of pre-heating a femoral component on the porosity and strength of
Clinical experience indicates the beneficial effects of antibiotic-loaded
Objectives. We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and
Bone tumours may recur locally even after wide surgical excision and systemic chemotherapy. Local control of growth may be accomplished by the addition of cytostatic drugs such as methotrexate (MTX) to
We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial
Vertebroplasty, which is the percutaneous injection of
We aimed to evaluate the precision and longitudinal sensitivity of measurement of bone mineral density (BMD) in the pelvis and to determine the effect of
Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA. This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.Aims
Methods
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Objectives
Methods
Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.Objectives
Methods
We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to
determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live
rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control)
irrigation. We measured temperatures surrounding the nerve root and made histological
evaluations.Aims
Materials and Methods
Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin. Methods. Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test. Results. The vancomycin group had significantly larger inhibition zones than the fosfomycin group from day three through to completion of the fourth week of incubation (p < 0.001). The vancomycin group exhibited a MRSA inhibition zone up to four weeks but the fosfomycin group showed an inhibition zone for only three days and after that did not show the the potential to inhibit MRSA. Conclusion. This in vitro study found that the inhibitory effect of vancomycin-impregnated articulating cement spacers against MRSA outperformed fosfomycin-impregnated articulating cement spacers. Further comparing our results to other published reports suggests there might be a limitation of the disc diffusion bioassay to show a large inhibitory zone in a high concentration of a highly soluble antibiotic. Cite this article: V. Yuenyongviwat, N. Ingviya, P. Pathaburee, B. Tangtrakulwanich. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating
Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments
(5 mg) were inserted at ten intervals during the five million cycle
(5 Mc) test. Objectives
Methods
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded
demineralised bone matrix (Group C; n = 22). Systemic antibiotics
were also used in all groups. After comparable periods of follow-up, the control of infection
was similar in the three groups. In particular, 25 out of 27 (92.6%)
patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out
of 22 (86.3%) in Group C showed no infection recurrence at means
of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up,
respectively, while Group A showed a reduced wound complication
rate. Our results show that patients treated with a bioactive glass
without local antibiotics achieved similar eradication of infection
and less drainage than those treated with two different antibiotic-loaded
calcium-based bone substitutes. Cite this article:
The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect. Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined. The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration.
We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p <
0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model.
The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.
This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured. Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum. The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.
Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in low doses, cytotoxic drugs mixed with polymethylmethacrylate cement could therefore be considered as effective local adjuvant treatment for GCTs.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.
Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions. Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures. These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.
Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p <
0.001). Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.
Interfacial defects between the cement mantle and a hip implant may arise from constrained shrinkage of the cement or from air introduced during insertion of the stem. Shrinkage-induced interfacial porosity consists of small pores randomly located around the stem, whereas introduced interfacial gaps are large, individual and less uniformly distributed areas of stem-cement separation. Using a validated CT-based technique, we investigated the extent, morphology and distribution of interfacial gaps for two types of stem, the Charnley-Kerboul and the Lubinus SPII, and for two techniques of implantation, line-to-line and undersized. The interfacial gaps were variable and involved a mean of 6.43% (
The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs. The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.
We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
We performed a biomechanical study to compare the augmentation of isolated fractured vertebral bodies using two different bone tamps. Compression fractures were created in 21 vertebral bodies harvested from red deer after determining their initial strength and stiffness, which was then assessed after standardised bipedicular vertebral augmentation using a balloon or an expandable polymer bone tamp. The median strength and stiffness of the balloon bone tamp group was 6.71 kN (
The aim of this study was to determine the effectiveness of antibiotic-impregnated implants in the prevention of bone infection. We used a model of contaminated fracture in goats to evaluate four treatment groups: no treatment, hand-made tobramycin-impregnated polymethylmethacrylate beads, commercially-available tobramycin-impregnated calcium sulphate pellets and commercially-available tobramycin-impregnated polymethylmethacrylate beads. Three weeks after intraosseous inoculation with streptomycin-resistant
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.
The role of bone-graft extenders in impaction revision surgery is becoming increasingly important. Tricalcium phosphate and hydroxyapatite have been shown to be both biocompatible and osteoconductive, yet many surgeons remain reluctant to use them. The difficulty in handling bone-graft extenders can be partly alleviated by using porous particles and adding clotted blood. In an Our findings showed that pure allograft bone particles had significantly higher cohesion than when mixed with extender (p <
0.001). Washing had no effect on cohesion. The addition of clotted blood significantly increased the cohesion of both pure bone (p <
0.019) and mixes with pure bone and with porous graft extender (p <
0.044).
The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces. The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired
The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.