Salubrinal is a synthetic agent that elevates phosphorylation
of eukaryotic translation initiation factor 2 alpha (eIF2α) and
alleviates stress to the endoplasmic reticulum. Previously, we reported
that in chondrocytes, Salubrinal attenuates expression and activity
of matrix metalloproteinase 13 (MMP13) through downregulating nuclear
factor kappa B (NFκB) signalling. We herein examine whether Salubrinal
prevents the degradation of articular cartilage in a mouse model
of osteoarthritis (OA). OA was surgically induced in the left knee of female mice. Animal
groups included age-matched sham control, OA placebo, and OA treated
with Salubrinal or Guanabenz. Three weeks after the induction of
OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At
three and six weeks, the femora and tibiae were isolated and the sagittal
sections were stained with Safranin O.Objectives
Methods
The aim of this study was to investigate the effect of laboratory-based simulator training on the ability of surgical trainees to perform diagnostic arthroscopy of the knee. A total of 20 junior orthopaedic trainees were randomised to receive either a fixed protocol of arthroscopic simulator training on a bench-top knee simulator or no additional training. Motion analysis was used to assess performance objectively. Each trainee then received traditional instruction and demonstrations of diagnostic arthroscopy of the knee in theatre before performing the procedure under the supervision of a blinded consultant trainer. Their performance was assessed using a procedure-based assessment from the Orthopaedic Competence Assessment Project and a five-point global rating assessment scale. In theatre the simulator-trained group performed significantly better than the untrained group using the Orthopaedic Competence Assessment Project score (p = 0.0007) and assessment by the global rating scale (p = 0.0011), demonstrating the transfer of psychomotor skills from simulator training to arthroscopy in the operating theatre. This has implications for the planning of future training curricula.