Advertisement for orthosearch.org.uk
Results 1 - 47 of 47
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1710 - 1716
1 Dec 2010
Chia W Pan R Tseng F Chen Y Feng C Lee H Chang D Sytwu H

The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP.

After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks.

Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines. The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion. The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 527 - 534
1 Apr 2008
Merican AM Amis AA

Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus. Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus


Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 457 - 460
1 Apr 2000
Zambonin G Camerino C Greco G Patella V Moretti B Grano M

We have studied in vitro the effect of a hydroxyapatite (HA) tricalcium phosphate material coated with hepatocyte growth factor (HA-HGF) on cell growth, collagen synthesis and secretion of metalloproteinases (MMPs) by human osteoblasts.

Cell proliferation was stimulated when osteoblasts were incubated with untreated HA and was further increased after exposure to HA-HGF. The uptake of [3H]-proline was increased after treatment with HA. When osteoblasts were exposed to HA-HGF, collagen synthesis was increased with respect to HA. The secretion of MMPs in control cells was undetectable, but in HA and HA-HGF cells MMP 2 and MMP 9 were clearly synthesised.

Our results suggest that HA can promote osteoblast activity and that HGF can further increase its bioactivity.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint 360
Vol. 10, Issue 4 | Pages 49 - 51
1 Aug 2021
Evans JT Welch M Whitehouse MR


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 577 - 582
1 Apr 2005
Senavongse W Amis AA

Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1466 - 1470
1 Oct 2010
Didden K Luyckx T Bellemans J Labey L Innocenti B Vandenneucker H

The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion > 90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 557 - 564
1 Apr 2009
Rumian AP Draper ERC Wallace AL Goodship AE

An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 730 - 735
1 May 2005
Sharpe JR Ahmed SU Fleetcroft JP Martin R

In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects


Bone & Joint 360
Vol. 9, Issue 2 | Pages 46 - 48
1 Apr 2020
Evans JT Whitehouse MR


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives

In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models.

Methods

OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives

We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days.

Materials and Methods

Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 137 - 144
1 Apr 2016
Paterson SI Eltawil NM Simpson AHRW Amin AK Hall AC

Objectives

During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes.

Methods

The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives

Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model.

Methods

Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant.


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives

Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors.

Methods

We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives

The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility.

Methods

The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 520 - 526
1 Apr 2008
Yau WP Leung A Liu KG Yan CH Wong LS Chiu KY

We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT.

The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation, sd 4) than in the conventional approach (3° of internal rotation, sd 4; p < 0.001). The errors in identifying the anteroposterior axis in the two approaches were 0° (sd 5) and 1.8° (sd 5) of internal rotation, respectively (p < 0.001).


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1110 - 1114
1 Aug 2007
Biant LC Bentley G

Implantation of autologous chondrocytes and matrix autologous chondrocytes are techniques of cartilage repair used in the young adult knee which require harvesting of healthy cartilage and which may cause iatrogenic damage to the joint. This study explores alternative sources of autologous cells.

Chondrocytes obtained from autologous bone-marrow-derived cells and those from the damaged cartilage within the lesion itself are shown to be viable alternatives to harvest-derived cells. A sufficient number and quality of cells were obtained by the new techniques and may be suitable for autologous chondrocyte and matrix autologous chondrocyte implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 693 - 700
1 May 2007
Ishii I Mizuta H Sei A Hirose J Kudo S Hiraki Y

We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the femoral trochlea of rabbit knees. These defects were then filled with the sealant.

Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect.

Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 977 - 983
1 Jul 2007
Lee JH Prakash KVB Pengatteeri YH Park SE Koh HS Han CW

We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (sd 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 688 - 691
1 May 2006
van Huyssteen AL Hendrix MRG Barnett AJ Wakeley CJ Eldridge JDJ

Trochlear dysplasia is an important anatomical abnormality in symptomatic patellar instability. Our study assessed the mismatch between the bony and cartilaginous morphology in patients with a dysplastic trochlea compared with a control group.

MRI scans of 25 knees in 23 patients with trochlear dysplasia and in 11 patients in a randomly selected control group were reviewed retrospectively in order to assess the morphology of the cartilaginous and bony trochlea. Inter- and intra-observer error was assessed.

In the dysplastic group there were 15 women and eight men with a mean age of 20.4 years (14 to 30). The mean bony sulcus angle was 167.9° (141° to 203°), whereas the mean cartilaginous sulcus angle was 186.5° (152° to 214°; p < 0.001). In 74 of 75 axial images (98.7%) the cartilaginous contour was different from the osseous contour on subjective assessment, the cartilage exacerbated the abnormality.

Our study shows that the morphology of the cartilaginous trochlea differs markedly from that of the underlying bony trochlea in patients with trochlear dysplasia. MRI is necessary in order to demonstrate the pathology and to facilitate surgical planning.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined.

The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 159 - 163
1 Jan 2010
Aykut S Öztürk A Özkan Y Yanik K İlman AA Özdemir RM

We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared.

Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p < 0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 169 - 175
1 Jan 2010
Dutton AQ Choong PF Goh JC Lee EH Hui JHP

We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue.

At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p < 0.001).

The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1257 - 1262
1 Sep 2009
Sundar S Pendegrass CJ Oddy MJ Blunn GW

We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an in vivo ovine model of reconstruction of the extensor mechanism at the knee. We hypothesised that augmentation of the tendon-implant interface with DBM would enhance the functional and histological outcomes as compared with previously reported control reconstructions without DBM. Function was assessed at six and 12 weeks postoperatively, and histological examination was undertaken at 12 weeks.

A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, sd 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, sd 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, sd 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, sd 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, sd 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 535 - 541
1 Apr 2008
Pendegrass CJ Sundar S Oddy MJ Cannon SR Briggs T Blunn GW

We used an in vivo model to assess the use of an autogenous cancellous bone block and marrow graft for augmenting tendon reattachment to metallic implants. We hypothesised that augmentation of the tendon-implant interface with a bone block would enable retention of the graft on the implant surface, enhance biological integration, and result in more consistent functional outcomes compared with previously reported morcellised graft augmentation techniques.

A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 402 - 407
1 Mar 2007
Alcantara-Martos T Delgado-Martinez AD Vega MV Carrascal MT Munuera-Martinez L

We studied the effect of vitamin C on fracture healing in the elderly. A total of 80 elderly Osteogenic Disorder Shionogi rats were divided into four groups with different rates of vitamin C intake. A closed bilateral fracture was made in the middle third of the femur of each rat. Five weeks after fracture the femora were analysed by mechanical and histological testing. The groups with the lower vitamin C intake demonstrated a lower mechanical resistance of the healing callus and a lower histological grade. The vitamin C levels in blood during healing correlated with the torque resistance of the callus formed (r = 0.525). Therefore, the supplementary vitamin C improved the mechanical resistance of the fracture callus in elderly rats. If these results are similar in humans, vitamin C supplementation should be recommended during fracture healing in the elderly.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 133 - 138
1 Jan 2007
Oe K Miwa M Sakai Y Lee SY Kuroda R Kurosaka M

We isolated multilineage mesenchymal progenitor cells from haematomas collected from fracture sites. After the haematoma was manually removed from the fracture site it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem-cell-related markers CD29, CD44, CD105 and CD166, and were negative for the haemopoietic markers CD14, CD34, CD45 and CD133 similar to bone-marrow-derived mesenchymal stem cells. In the presence of lineage-specific induction factors the adherent cells could differentiate in vitro into osteogenic, chondrogenic and adipogenic cells.

Our results indicate that haematomas found at a fracture site contain multilineage mesenchymal progenitor cells and play an important role in bone healing. Our findings imply that to enhance healing the haematoma should not be removed from the fracture site during osteosynthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group.

Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05).

Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1245 - 1251
1 Sep 2006
Pendegrass CJ Oddy MJ Sundar S Cannon SR Goodship AE Blunn GW

We examined the mechanical properties of Vicryl (polyglactin 910) mesh in vitro and assessed its use in vivo as a novel biomaterial to attach tendon to a hydroxyapatite-coated metal implant, the interface of which was augmented with autogenous bone and marrow graft. This was compared with tendon re-attachment using a compressive clamp device in an identical animal model. Two- and four-ply sleeves of Vicryl mesh tested to failure under tension reached 5.13% and 28.35% of the normal ovine patellar tendon, respectively. Four-ply sleeves supported gait in an ovine model with 67.05% weight-bearing through the operated limb at 12 weeks, without evidence of mechanical failure.

Mesh fibres were visible at six weeks but had been completely resorbed by 12 weeks, with no evidence of chronic inflammation. The tendon-implant neoenthesis was predominantly an indirect type, with tendon attached to the bone-hydroxyapatite surface by perforating collagen fibres.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1006 - 1011
1 Jul 2005
Hatano H Ogose A Hotta T Endo N Umezu H Morita T

We examined osteochondral autografts, obtained at a mean of 19.5 months (3 to 48) following extracorporeal irradiation and re-implantation to replace bone defects after removal of tumours. The specimens were obtained from six patients (mean age 13.3 years (10 to 18)) and consisted of articular cartilage (five), subchondral bone (five), external callus (one) and tendon (one). The tumour cells in the grafts were eradicated by a single radiation dose of 60 Gy. In three cartilage specimens, viable chondrocytes were detected. The survival of chondrocytes was confirmed with S-100 protein staining. Three specimens from the subchondral region and a tendon displayed features of regeneration. Callus was seen at the junction between host and irradiated bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1575 - 1580
1 Nov 2005
Böstman OM Laitinen OM Tynninen O Salminen ST Pihlajamäki HK

Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood.

In a long-term experimental study, we have determined the patterns of tissue restoration 36 and 54 months after implantation of polyglycolic acid and poly-laevo-lactic acid screws in the distal femur of the rabbit.

After 36 months in the polyglycolic acid group the specimens showed no remaining polymer and loose connective tissue occupied 80% of the screw track. Tissue restoration remained poor at 54 months, the amounts of trabecular bone and haematopoietic elements being significantly lower than those in the intact control group. The amount of trabecular bone within the screw track at 54 months in the polyglycolic acid group was less than in the empty drill holes (p = 0.04). In the poly-laevo-lactic acid group, polymeric material was present in abundance after 54 months, occupying 60% of the cross-section of the core area of the screw track.

When using absorbable internal fixation implants we should recognise that the degradation of the devices will probably not be accompanied by the restoration of normal trabecular bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 873 - 878
1 Jun 2005
Oddy MJ Pendegrass CJ Goodship AE Cannon SR Briggs TWR Blunn GW

We developed an in vivo model of the attachment of a patellar tendon to a metal implant to simulate the reconstruction of an extensor mechanism after replacement of the proximal tibia. In 24 ewes, the patellar tendon was attached to a hydroxyapatite (HA)-coated titanium prosthesis. In 12, the interface was augmented with autograft containing cancellous bone and marrow. In the remaining ewes, the interface was not grafted.

Kinematic gait analysis showed nearly normal function of the joint by 12 weeks. Force-plate assessment showed a significant increase in functional weight-bearing in the grafted animals (p = 0.043). The tendon-implant interface showed that without graft, encapsulation of fibrous tissue occurred. With autograft, a developing tendon-bone-HA-implant interface was observed at six weeks and by 12 weeks a layered tendon-fibrocartilage-bone interface was seen which was similar to a direct-type enthesis.

With stable mechanical fixation, an appropriate bioactive surface and biological augmentation the development of a functional tendon-implant interface can be achieved.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel.

The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.