In March 2012, an
Aims. To develop prediction models using machine-learning (ML)
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI
Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific
Aims. Total hip arthroplasty (THA) in patients with post-polio residual paralysis (PPRP) is challenging. Despite relief in pain after THA, pre-existing muscle imbalance and altered gait may cause persistence of difficulty in walking. The associated soft tissue contractures not only imbalances the pelvis, but also poses the risk of dislocation, accelerated polyethylene liner wear, and early loosening. Methods. In all, ten hips in ten patients with PPRP with fixed pelvic obliquity who underwent THA as per an
The use of plate-and-cable constructs to treat periprosthetic fractures around a well-fixed femoral component in total hip replacements has been reported to have high rates of failure. Our aim was to evaluate the results of a surgical treatment
Aims. Our objective was describing an
Aims. Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction. Methods. A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP
Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. Methods. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The
Aims. Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Methods. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors. Results. Implantation was possible in all cases with a 2D centre of rotation deviation of 10 mm (SD 5.8; 1 to 29). PPR revision was necessary in eight (10%) patients. HHS increased significantly from 33 to 72 postoperatively, with a mean increase of 39 points (p < 0.001). Postoperative EQ-5D score was 0.7 (SD 0.3; -0.3 to 1). Risk factor analysis showed significant revision rates for septic indications (p ≤ 0.001) as well as femoral defect size (p = 0.001). Conclusion. Since large acetabular defects are being treated surgically more often, custom-made PPR should be integrated as an option in treatment
Aims. While previously underappreciated, factors related to the spine contribute substantially to the risk of dislocation following total hip arthroplasty (THA). These factors must be taken into consideration during preoperative planning for revision THA due to recurrent instability. We developed a protocol to assess the functional position of the spine, the significance of these findings, and how to address different pathologies at the time of revision THA. Patients and Methods. Prospectively collected data on 111 patients undergoing revision THA for recurrent instability from January 2014 to January 2017 at two institutions were included (protocol group) and matched 1:1 to 111 revisions specifically performed for instability not using this protocol (control group). Mean follow-up was 2.8 years. Protocol patients underwent standardized preoperative imaging including supine and standing anteroposterior (AP) pelvis and lateral radiographs. Each case was scored according to the Hip-Spine Classification in Revision THA. Results. Survival free of dislocation at two years was 97% in the protocol group (three dislocations, all within three months of surgery) versus 84% in the control group (18 patients). Furthermore, 77% of the inappropriately positioned acetabular components would have been unrecognized by supine AP pelvis imaging alone. Conclusion. Using the Hip-Spine Classification System in revision THA, we demonstrated a significant decrease in the risk of recurrent instability compared with a control group. Without the use of this
The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for material loss and wear at the taper junctions through
taper wear analysis. Deviations in taper geometries between revised
and pristine modular neck tapers were determined using high resolution
tactile measurements. A new
Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained.Aims
Methods
Persistent groin pain after seemingly successful
total hip replacement (THR) appears to have become more common.
Recent studies have indicated a high incidence after metal-on-polyethylene
and metal-on-metal conventional THR and it has been documented in
up to 18% of patients after metal-on-metal resurfacing. There are many
causes, including acetabular loosening, stress fracture, and iliopsoas
tendonitis and impingement. The evaluation of this problem requires
a careful history and examination, plain radiographs and an
Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular fracture of the hip. However, it remains unclear whether there are subgroups of patients who may benefit from the alternative operation of a modern uncemented hemiarthroplasty – the aim of this study was to investigate this issue. Knowledge about the heterogeneity of treatment effects is important for surgeons in order to target operations towards specific subgroups who would benefit the most. We used causal forest analysis to compare subgroup- and individual-level treatment effects between cemented and modern uncemented hemiarthroplasty in patients aged > 60 years with an intracapsular fracture of the hip, using data from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized clinical trial. EuroQol five-dimension index scores were used to measure health-related quality of life at one, four, and 12 months postoperatively.Aims
Methods
Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).Aims
Methods
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.Aims
Methods
Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods