Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 301 - 303
1 Mar 1997
Boyer MI Axelrod TS

We describe a new surgical treatment of atrophic nonunion of the clavicle. The nonunion is excised by cuts at 45° to the long axis and repair uses 3.5 mm pelvic reconstruction or dynamic compression plates, with a lag screw to provide interfragmentary compression. The site is grafted with cancellous bone.

We have been successful in all seven patients, with early return to normal function. The consequent narrowing of the shoulder girdle is fully acceptable for appearance and function.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 112 - 115
1 Jun 2013
Ismail HD Phedy P Kholinne E Kusnadi Y Sandhow L Merlina M

Objectives

Nonunion is one of the most troublesome complications to treat in orthopaedics. Former authors believed that atrophic nonunion occurred as a result of lack of mesenchymal stem cells (MSCs). We evaluated the number and viability of MSCs in site of atrophic nonunion compared with those in iliac crest.

Methods

We enrolled five patients with neglected atrophic nonunions of long bones confirmed by clinical examinations and plain radiographs into this study. As much as 10 ml bone marrow aspirate was obtained from both the nonunion site and the iliac crest and cultured for three weeks. Cell numbers were counted using a haemocytometer and vitality of the cells was determined by trypan blue staining. The cells were confirmed as MSCs by evaluating their expression marker (CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and viability were compared between the nonunion and iliac creat sites.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 604 - 610
1 May 2003
Reed AAC Joyner CJ Isefuku S Brownlow HC Simpson AHRW

Our aim was to develop a clinically relevant model of atrophic nonunion in the rat to test the hypothesis that the vessel density of atrophic nonunion reaches that of normal healing bone, but at a later time-point. Atrophic nonunion is usually attributed to impaired blood supply and is poorly understood. We determined the number of blood vessels at the site of an osteotomy using immunolocalisation techniques in both normally healing bones and in atrophic nonunion. At one week after operation there were significantly fewer blood vessels in the nonunion group than in the healing group. By eight weeks, the number in the atrophic nonunion group had reached the same level as that in the healing group. Our findings suggest that the number of blood vessels in atrophic nonunion reaches the same level as that in healing bone, but at a later time-point. Diminished vascularity within the first three weeks, but not at a later time-point, may prevent fractures from uniting


Bone & Joint Research
Vol. 5, Issue 10 | Pages 512 - 519
1 Oct 2016
Mills L Tsang J Hopper G Keenan G Simpson AHRW

Objectives

A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion.

Methods

Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1436 - 1440
1 Nov 2014
Henderson ER O’Connor MI Ruggieri P Windhager R Funovics PT Gibbons CL Guo W Hornicek FJ Temple HT Letson GD

Previous classification systems of failure of limb salvage focused primarily on endoprosthetic failures and lacked sufficient depth for the effective study of the causes of failure. In order to address these inadequacies, the International Society of Limb Salvage (ISOLS) formed a committee to recommend revisions of the previous systems. The purpose of this study was to report on their recommendations. The modifications were prepared using an earlier, evidence-based model with subclassification based on the existing medical literature. Subclassification for all five primary types of failure of limb salvage following endoprosthetic reconstruction were formulated and a complementary system was derived for the failure of biological reconstruction. An additional classification of failure in paediatric patients was also described.

Limb salvage surgery presents a complex array of potential mechanisms of failure, and a complete and precise classification of types of failure is required. Earlier classification systems lacked specificity, and the evidence-based system outlined here is designed to correct these weaknesses and to provide a means of reporting failures of limb salvage in order to allow the interpretation of outcome following reconstructive surgery.

Cite this article: Bone Joint J 2014;96-B:1436–40.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 522 - 529
1 Apr 2009
Ryzewicz M Morgan SJ Linford E Thwing JI de Resende GVP Smith WR

Nonunion of the tibia associated with bone loss, previous infection, obliteration of the intramedullary canal or located in the distal metaphysis poses a challenge to the surgeon and significant morbidity to patients. We retrospectively reviewed the records of 24 patients who were treated by central bone grafting and compared them to those of 20 who were treated with a traditional posterolateral graft. Central bone grafting entails a lateral approach, anterior to the fibula and interosseous membrane which is used to create a central space filled with cancellous iliac crest autograft. Upon consolidation, a tibiofibular synostosis is formed that is strong enough for weight-bearing. This procedure has advantages over other methods of treatment for selected nonunions.

Of the 24 patients with central bone grafting, 23 went on to radiographic and clinical union without further intervention. All healed within a mean of 20 weeks (10 to 48). No further bone grafts were required, and few complications were encountered. These results were comparable to those of the 20 patients who underwent posterolateral bone grafting who united at a mean of 31.3 weeks (16 to 60) but one of whom required below-knee amputation for intractable sepsis.

Central bone grafting is a safe and effective treatment for difficult nonunions of the tibia.