Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Bone & Joint 360
Vol. 13, Issue 5 | Pages 51 - 52
1 Oct 2024
Marson BA

The Cochrane Collaboration has produced three new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner. These are relevant to a wide range of musculoskeletal specialists, and include reviews in lateral elbow pain, osteoarthritis of the big toe joint, and cervical spine injury in paediatric trauma patients.


Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 365 - 369
1 Mar 1998
Abraham P Leftheriotis G Saumet JL

Chronic compartment syndrome (CCS) is usually considered to be due to ischaemia of muscle. We have attempted to use the direct measurement of muscle blood flow for diagnosis since the assessment of intracompartmental pressure does not provide accurate knowledge of the vascular state. We recorded simultaneously continuous measurements of the laser Doppler flow (LDF) in muscle and the intracompartment pressure (ICP) after exercise in seven patients with CCS, and in seven control subjects. The mean ICP was 74.1 ± 4.4 mmHg in CCS patients and 24.2 ± 3.4 mmHg in control subjects one minute after exercise, decreasing to 34.6 ± 2.3 mmHg and 15.0 ± 1.6 mmHg at 20 min, respectively. The LDF was 0.80 ± 0.11 arbitrary units (AU) in control subjects and 1.09 ± 0.14 AU in CCS patients one minute after exercise, and 0.41 ± 0.11 AU and 0.27 ± 0.04 AU, respectively, at the end of the recovery period. The ICP showed a progressive decrease over time in both groups. The LDF decreased sharply during the first minutes of recovery in control subjects, but in patients with CCS there was a delayed hyperaemic peak with blood flow reaching 0.84 ± 0.10 AU at nine minutes as against 0.33 ± 0 .06 AU for control subjects (p < 0.01). The ICP increased in both control subjects and CCS patients after exercise with no clear cut-off point between the groups. By contrast, changes in muscle blood flow over time were clearly different between control subjects and patients with CCS. For this reason, LDF should be investigated further as a technique for the diagnosis of CCS


Bone & Joint 360
Vol. 13, Issue 6 | Pages 48 - 49
1 Dec 2024
Evans JT Kulkarni Y Whitehouse MR


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint Research
Vol. 5, Issue 2 | Pages 61 - 65
1 Feb 2016
Scott EEF Hamilton DF Wallace RJ Muir AY Simpson AHRW

Objectives. Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results. The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion. Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. doi: 10.1302/2046-3758.52.2000484


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 700 - 704
1 Jul 1999
Sochart DH Hardinge K

We have studied the relationship between movements of the foot and ankle and venous blood flow from the lower limb using colourflow Duplex ultrasound to determine the optimum type of exercise for promoting venous return. Studies of both active and passive movements were carried out on 40 limbs in 20 subjects (18 men; 2 women), with a median age of 27 years (20 to 54). We assessed ankle dorsiflexion and plantar flexion, subtalar inversion and eversion, and a combination of all movements. There was no difference in venous flow when comparing opposite limbs in a single subject (p > 0.5), but active exercises produced higher peak and mean velocities of blood flow than passive ones. The active combined movement produced the highest velocities with an increase of 38% in mean and of 58% in peak flow velocities, which were significantly greater than the peak and mean flow rates produced by passive movements. The active combined exercise would therefore be the most effective in eliminating stasis and could contribute to the prevention of deep-vein thrombosis


Bone & Joint 360
Vol. 11, Issue 1 | Pages 50 - 51
1 Feb 2022
Das A


Bone & Joint 360
Vol. 10, Issue 4 | Pages 49 - 51
1 Aug 2021
Evans JT Welch M Whitehouse MR


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1201 - 1203
1 Nov 2000
Karrholm J Brandsson S Freeman MAR

We studied the knees of 11 volunteers using RSA during a step-up exercise requiring extension while weight-bearing from 50° to 0°. The findings on weight-bearing flexion with and without external rotation of the tibia based on MRI were confirmed


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 591 - 594
1 May 2000
Milgrom C Finestone A Simkin A Ekenman I Mendelson S Millgram M Nyska M Larsson E Burr D

Mechanical loading during physical activity produces strains within bones. It is thought that these forces provide the stimulus for the adaptation of bone. Tibial strains and rates of strain were measured in vivo in six subjects during running, stationary bicycling, leg presses and stepping and were compared with those of walking, an activity which has been found to have only a minimal effect on bone mass. Running had a statistically significant higher principal tension, compression and shear strain and strain rates than walking. Stationary bicycling had significantly lower tension and shear strains than walking. If bone strains and/or strain rates higher than walking are needed for tibial bone strengthening, then running is an effective strengthening exercise for tibial bone


Bone & Joint 360
Vol. 9, Issue 3 | Pages 44 - 45
1 Jun 2020
Das MA


Bone & Joint 360
Vol. 9, Issue 1 | Pages 51 - 52
1 Feb 2020
Das A


Bone & Joint 360
Vol. 7, Issue 3 | Pages 38 - 39
1 Jun 2018
Das A


Bone & Joint 360
Vol. 7, Issue 6 | Pages 41 - 42
1 Dec 2018
Das A


Bone & Joint 360
Vol. 7, Issue 1 | Pages 38 - 39
1 Feb 2018
Das A


Bone & Joint 360
Vol. 7, Issue 2 | Pages 40 - 42
1 Apr 2018
Foy MA


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives

This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group.

Methods

A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.