Aims. To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based prediction algorithms and game theory. Methods. Patients who underwent surgery for ASD, with a minimum of two-year follow-up, were retrospectively reviewed. In total, 210 patients were included and randomly allocated into training (70% of the sample size) and test (the remaining 30%) sets to develop the
Adult spinal deformity (ASD) surgery can reduce pain and disability. However, the actual surgical efficacy of ASD in doing so is far from desirable, with frequent complications and limited improvement in quality of life. The accurate prediction of surgical outcome is crucial to the process of clinical decision-making. Consequently, the aim of this study was to develop and validate a model for predicting an ideal surgical outcome (ISO) two years after ASD surgery. We conducted a retrospective analysis of 458 consecutive patients who had undergone spinal fusion surgery for ASD between January 2016 and June 2022. The outcome of interest was achievement of the ISO, defined as an improvement in patient-reported outcomes exceeding the minimal clinically important difference, with no postoperative complications. Three machine-learning (ML) algorithms – LASSO, RFE, and Boruta – were used to identify key variables from the collected data. The dataset was randomly split into training (60%) and test (40%) sets. Five different ML models were trained, including logistic regression, random forest, XGBoost, LightGBM, and multilayer perceptron. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC).Aims
Methods
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods