Advertisement for orthosearch.org.uk
Results 1 - 20 of 320
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 82 - 89
1 Feb 2017
Nagra NS Zargar N Smith RDJ Carr AJ

Objectives. All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. Materials and Methods. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05. Results. Overall, mean maximum tensile strength values were significantly higher for the traditional anchor (181.0 N, standard error (. se). 17.6) compared with the all-suture anchors (mean 133.1 N . se. 16.7) (p = 0.04). The JuggerKnot anchor had greatest displacement at 50, 100 and 150 cycles, and at failure, reaching statistical significance over the control at 100 and 150 cycles (22.6 mm . se. 2.5 versus 12.5 mm . se. 0.3; and 29.6 mm . se. 4.8 versus 17.0 mm . se. 0.7). Every all-suture anchor tested showed substantial (> 5 mm) displacement between 50 and 100 cycles (6.2 to 14.3). All-suture anchors predominantly failed due to anchor pull-out (95% versus 25% of traditional anchors), whereas a higher proportion of traditional anchors failed secondary to suture breakage. Conclusion. We demonstrate decreased failure load, increased total displacement, and variable failure mechanisms in all-suture anchors, compared with traditional anchors designed for rotator cuff repair. These findings will aid the surgeon’s choice of implant, in the context of the clinical scenario. Cite this article: N. S. Nagra, N. Zargar, R. D. J. Smith, A. J. Carr. Mechanical properties of all-suture anchors for rotator cuff repair. Bone Joint Res 2017;6:82–89. DOI: 10.1302/2046-3758.62.BJR-2016-0225.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 900 - 907
1 Aug 2002
Ding M Odgaard A Danielsen CC Hvid I

Previous studies have shown that low-density, rod-like trabecular structures develop in regions of low stress, whereas high-density, plate-like trabecular structures are found in regions of high stress. This phenomenon suggests that there may be a close relationship between the type of trabecular structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young’s modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 315 - 319
1 Mar 1994
Obeid E Adams M Newman J

We studied the mechanical properties of cartilage from the apparently unaffected compartment of knees with unicompartmental osteoarthritis (OA). Plugs of cartilage and subchondral bone, 8 mm in diameter, were obtained from the tibial plateau of seven patients treated by total knee replacement. Control specimens were obtained from eight cadaver knees of similar age. Specimens were loaded by a plane-ended indentor in a hydraulic materials testing machine; we measured thickness, 'softness', rate of creep, and compressive strength of the articular cartilage. We found that the 'unaffected' cartilage from OA knees was significantly thinner and softer than control cartilage, and it was slightly, although not significantly, weaker. We conclude that the apparently unaffected cartilage in knees with unicompartmental OA is mechanically inferior to normal cartilage, even although clinically, radiologically and morphologically it appears to be sound


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 207 - 211
1 Mar 1999
Wang C Shau Y Hsu T Chen H Chien S

We compared the mechanical properties of normal and reconstructed heel pads in seven patients. Four had latissimus dorsi flaps and one each an anterior thigh flap, a local dorsalis pedis flap and a sural arterial flap. The thickness of the heel pad was measured under serial incremental loads of 0.5 kg to a maximum of 3 kg and then relaxed sequentially. The load-displacement curve of the heel pad during a loading-unloading cycle was plotted and from this the unloaded heel-pad thickness (UHPT), compressibility index (CI), elastic modulus (Ep), and energy dissipation ratio (EDR) were calculated. The EDR was significantly increased in the reconstructed heels (53.7 ± 18% v 23.4 ± 6.5%, p = 0.003) indicating that in them more energy is dissipated as heat. Insufficient functional capacity in the reconstructed heel pad can lead to the development of shock-induced discomfort and ulceration


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1059 - 1064
1 Sep 2000
Rupp S Seil R Kohn D Müller B

Our aim was to analyse the effect of avascularity on the morphology and mechanical properties (tensile strength, viscoelasticity) of human bone-patellar-tendon-bone (BPTB) grafts in vitro. These were harvested at postmortem and stored submerged in denaturated human plasma at a constant pH, pO. 2. , pCO. 2. , temperature and humidity under sterile conditions. Mechanical testing was performed two and four weeks after removal of the graft. The mean ultimate strength was 1085.7 ± 255.8 N (control), 1009.0 ± 314.9 N (two weeks cultured) and 1076.8 ± 414.8 N (four weeks cultured). There was no significant difference in linear stiffness or deformation to failure between the groups. There was a difference in viscoelasticity between the control group and the avascular grafts and the latter had significant lower peak load-to-load ratios after 15 minutes compared with the control group. After two and four weeks the graft contained viable fibroblasts. There was regular cellularity in the superficial layers and decreased cellularity in the midportion. The structure of the collagen including the crimp pattern appeared to be normal in polarised light. We conclude that avascularity does not significantly affect ultimate failure loads or stiffness of BPTB grafts. Slight changes in viscoelasticity were induced, but the significance of the increased stress relaxation is not fully understood


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 2 | Pages 233 - 238
1 May 1981
Dickenson R Hutton W Stott

Specimens of femoral cortical bone from normal subjects and from patients with osteoporosis were mechanically tested in tension to destruction. The osteoporotic bone showed less strength and less stiffness than the normal bone; these reductions are related to the increased cavity area in osteoporosis. Further, the osteoporotic bone is not able to absorb as much energy before fracture as the normal bone; but this difference is not related to changes in cavity area.


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 4 | Pages 558 - 564
1 Aug 1987
Weightman B Freeman M Revell P Braden M Albrektsson B Carlson L

Mechanical and biomechanical testing of a new bone cement suggests that improved load transfer to the proximal femur could be achieved with the combination of a cement having a lower modulus, a greater ductility and a lower creep resistance than polymethylmethacrylate and a suitably shaped femoral component.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 454 - 460
1 Mar 2010
Baleani M Bialoblocka-Juszczyk E Engels GE Viceconti M

We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement.

Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity.

Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p < 0.001) and reduced the mean curing time (−1.5 min) (p < 0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p < 0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were < 50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined.

Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1534 - 1538
1 Nov 2007
Hammer TO Wieling R Green JM Südkamp NP Schneider E Müller CA

This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect.

There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by biomechanical testing of stiffness and strength. This study suggests it could be beneficial to fill cortical defects with reaming particles in clinical practice, if feasible.


Bone & Joint Research
Vol. 4, Issue 3 | Pages 38 - 44
1 Mar 2015
Thornton GM Reno CR Achari Y Morck DW Hart DA

Objectives. Ligaments which heal spontaneously have a healing process that is similar to skin wound healing. Menopause impairs skin wound healing and may likewise impair ligament healing. Our purpose in this study was to investigate the effect of surgical menopause on ligament healing in a rabbit medial collateral ligament model. Methods. Surgical menopause was induced with ovariohysterectomy surgery in adult female rabbits. Ligament injury was created by making a surgical gap in the midsubstance of the medial collateral ligament. Ligaments were allowed to heal for six or 14 weeks in the presence or absence of oestrogen before being compared with uninjured ligaments. Molecular assessment examined the messenger ribonucleic acid levels for collagens, proteoglycans, proteinases, hormone receptors, growth factors and inflammatory mediators. Mechanical assessments examined ligament laxity, total creep strain and failure stress. Results. Surgical menopause in normal medial collateral ligaments initiated molecular changes in all the categories evaluated. In early healing medial collateral ligaments, surgical menopause resulted in downregulation of specific collagens, proteinases and inflammatory mediators at 6 weeks of healing, and proteoglycans, growth factors and hormone receptors at 14 weeks of healing. Surgical menopause did not produce mechanical changes in normal or early healing medial collateral ligaments. With or without surgical menopause, healing ligaments exhibited increased total creep strain and decreased failure stress compared with uninjured ligaments. Conclusions. Surgical menopause did not affect the mechanical properties of normal or early healing medial collateral ligaments in a rabbit model. The results in this preclinical model suggest that menopause may result in no further impairment to the ligament healing process. . Cite this article: Bone Joint Res 2015;4:38–44


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 663 - 667
1 May 2012
Ortiz C Wagner E Mocoçain P Labarca G Keller A Del Buono A Maffulli N

We tested four types of surgical repair for load to failure and distraction in a bovine model of Achilles tendon repair. A total of 20 fresh bovine Achilles tendons were divided transversely 4 cm proximal to the calcaneal insertion and randomly repaired using the Dresden technique, a Krackow suture, a triple-strand Dresden technique or a modified oblique Dresden technique, all using a Fiberwire suture. Each tendon was loaded to failure. The force applied when a 5 mm gap was formed, peak load to failure, and mechanism of failure were recorded. The resistance to distraction was significantly greater for the triple technique (mean 246.1 N (205 to 309) to initial gapping) than for the Dresden (mean 180 N (152 to 208); p = 0.012) and the Krackow repairs (mean 101 N (78 to 112; p < 0.001). Peak load to failure was significantly greater for the triple-strand repair (mean 675 N (453 to 749)) than for the Dresden (mean 327.8 N (238 to 406); p < 0.001), Krackow (mean 223.6 N (210 to 252); p <  0.001) and oblique repairs (mean 437.2 N (372 to 526); p < 0.001). Failure of the tendon was the mechanism of failure for all specimens except for the tendons sutured using the Krackow technique, where the failure occurred at the knot.

The triple-strand technique significantly increased the tensile strength (p = 0.0001) and gap resistance (p = 0.01) of bovine tendon repairs, and might have advantages in human application for accelerated post-operative rehabilitation.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


Bone & Joint Research
Vol. 11, Issue 7 | Pages 413 - 425
1 Jul 2022
Tu C Lai S Huang Z Cai G Zhao K Gao J Wu Z Zhong Z

Aims. Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes’ GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes’ GJIC in aged male mice and its mechanism. Methods. Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks. Results. The AOPP levels were increased in aged mice and correlated with degeneration of osteocyte network, loss of bone mass, and decreased Cx43 expression. AOPP intervention induced NADPH oxidase activation and mitochondrial dysfunction, triggered ROS generation, reduced Cx43 expression, and ultimately impaired osteocytes’ GJIC, which were ameliorated by NADPH oxidase inhibitor apocynin, mitochondria-targeted superoxide dismutase mimetic (mito-TEMPO), and ROS scavenger N-acetyl cysteine. Chronic AOPP loading accelerated the degradation of osteocyte networks and decreased Cx43 expression, resulting in deterioration of bone mass and mechanical properties in vivo. Conclusion. Our study suggests that AOPP accumulation contributes to age-related impairment of GJIC in osteocytes of male mice, which may be part of the pathogenic mechanism responsible for bone loss during ageing. Cite this article: Bone Joint Res 2022;11(7):413–425


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Bone & Joint Open
Vol. 3, Issue 8 | Pages 648 - 655
1 Aug 2022
Yeung CM Bhashyam AR Groot OQ Merchan N Newman ET Raskin KA Lozano-Calderón SA

Aims. Due to their radiolucency and favourable mechanical properties, carbon fibre nails may be a preferable alternative to titanium nails for oncology patients. We aim to compare the surgical characteristics and short-term results of patients who underwent intramedullary fixation with either a titanium or carbon fibre nail for pathological long-bone fracture. Methods. This single tertiary-institutional, retrospectively matched case-control study included 72 patients who underwent prophylactic or therapeutic fixation for pathological fracture of the humerus, femur, or tibia with either a titanium (control group, n = 36) or carbon fibre (case group, n = 36) intramedullary nail between 2016 to 2020. Patients were excluded if intramedullary fixation was combined with any other surgical procedure/fixation method. Outcomes included operating time, blood loss, fluoroscopic time, and complications. Fisher’s exact test and Mann-Whitney U test were used for categorical and continuous outcomes, respectively. Results. Patients receiving carbon nails as compared to those receiving titanium nails had higher blood loss (median 150 ml (interquartile range (IQR) 100 to 250) vs 100 ml (IQR 50 to 150); p = 0.042) and longer fluoroscopic time (median 150 seconds (IQR 114 to 182) vs 94 seconds (IQR 58 to 124); p = 0.001). Implant complications occurred in seven patients (19%) in the titanium group versus one patient (3%) in the carbon fibre group (p = 0.055). There were no notable differences between groups with regard to operating time, surgical wound infection, or survival. Conclusion. This pilot study demonstrates a non-inferior surgical and short-term clinical profile supporting further consideration of carbon fibre nails for pathological fracture fixation in orthopaedic oncology patients. Given enhanced accommodation of imaging methods important for oncological surveillance and radiation therapy planning, as well as high tolerances to fatigue stress, carbon fibre implants possess important oncological advantages over titanium implants that merit further prospective investigation. Level of evidence: III, Retrospective study. Cite this article: Bone Jt Open 2022;3(8):648–655


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims. We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Methods. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement. Results. Gentamicin-loaded UHMWPE tibial components not only eradicated planktonic Staphylococcus aureus, but also prevented colonization of both femoral and tibial components. The proposed spacer possesses far superior mechanical and wear properties when compared with conventional bone cement spacers. Conclusion. The proposed gentamicin-eluting UHMWPE spacer can provide antibacterial efficacy comparable with currently used bone cement spacers, while overcoming their drawbacks. The novel spacer proposed here has the potential to drastically reduce complications associated with currently used bone cement spacers and substantially improve patients’ quality of life during the treatment. Cite this article: Bone Joint J 2020;102-B(6 Supple A):151–157


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 942 - 948
1 Jul 2011
Chaudhury S Holland C Vollrath F Carr AJ

This study reports the application of a novel method for quantitatively determining differences in the mechanical properties of healthy and torn rotator cuff tissues. In order to overcome problems of stress risers at the grip-tendon interface that can obscure mechanical measurements of small tendons, we conducted our investigation using dynamic shear analysis. Rotator cuff tendon specimens were obtained from 100 patients during shoulder surgery. They included 82 differently sized tears and 18 matched controls. We subjected biopsy samples of 3 mm in diameter to oscillatory deformation under compression using dynamic shear analysis. The storage modulus (G’) was calculated as an indicator of mechanical integrity. Normal tendons had a significantly higher storage modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.003). Normal tendons had a significantly higher mean shear modulus than tendons with massive tears (p < 0.01). Dynamic shear analysis allows the determination of shear mechanical properties of small tissue specimens obtained intra-operatively that could not be studied by conventional methods of tensile testing. These methods could be employed to investigate other musculoskeletal tissues. This pilot study provides some insight into mechanisms that might contribute to the failure of repair surgery, and with future application could help direct the most appropriate treatment for specific rotator cuff tears


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 643 - 647
1 May 2008
Bridgens J Davies S Tilley L Norman P Stockley I

Bone cements produced by different manufacturers vary in their mechanical properties and antibiotic elution characteristics. Small changes in the formulation of a bone cement, which may not be apparent to surgeons, can also affect these properties. The supplier of Palacos bone cement with added gentamicin changed in 2005. We carried out a study to examine the mechanical characteristics and antibiotic elution of Schering-Plough Palacos, Heraeus Palacos and Depuy CMW Smartset bone cements. Both Heraeus Palacos and Smartset bone cements performed significantly better than Schering-Plough Palacos in terms of mechanical characteristics, with and without additional vancomycin (p < 0.001). All cements show a deterioration in flexural strength with increasing addition of vancomycin, albeit staying above ISO minimum levels. Both Heraeus Palacos and Smartset elute significantly more gentamicin cumulatively than Schering-Plough Palacos. Smartset elutes significantly more vancomycin cumulatively than Heraeus Palacos. The improved antibiotic elution characteristics of Smartset and Heraeus Palacos are not associated with a deterioration in mechanical properties. Although marketed as the ‘original’ Palacos, Heraeus Palacos has significantly altered mechanical and antibiotic elution characteristics compared with the most commonly-used previous version


Bone & Joint Research
Vol. 10, Issue 2 | Pages 137 - 148
1 Feb 2021
Lawrence EA Aggleton J van Loon J Godivier J Harniman R Pei J Nowlan N Hammond C

Aims. Vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, with sarcopenia and osteoporosis observed in astronauts returning from space, the effects of shorter exposures to increased gravitational fields are less well characterized. We aimed to test how hypergravity affects early cartilage and skeletal development in a zebrafish model. Methods. We exposed zebrafish to 3 g and 6 g hypergravity from three to five days post-fertilization, when key events in jaw cartilage morphogenesis occur. Following this exposure, we performed immunostaining along with a range of histological stains and transmission electron microscopy (TEM) to examine cartilage morphology and structure, atomic force microscopy (AFM) and nanoindentation experiments to investigate the cartilage material properties, and finite element modelling to map the pattern of strain and stress in the skeletal rudiments. Results. We did not observe changes to larval growth, or morphology of cartilage or muscle. However, we observed altered mechanical properties of jaw cartilages, and in these regions we saw changes to chondrocyte morphology and extracellular matrix (ECM) composition. These areas also correspond to places where strain and stress distribution are predicted to be most different following hypergravity exposure. Conclusion. Our results suggest that altered mechanical loading, through hypergravity exposure, affects chondrocyte maturation and ECM components, ultimately leading to changes to cartilage structure and function. Cite this article: Bone Joint Res 2021;10(2):137–148


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 3 | Pages 371 - 380
1 May 1994
Gerber C Schneeberger A Beck M Schlegel U

We have studied the mechanical properties of several current techniques of tendon-to-bone suture employed in rotator-cuff repair. Non-absorbable braided polyester and absorbable polyglactin and polyglycolic acid sutures best combined ultimate tensile strength and stiffness. Polyglyconate and polydioxanone sutures failed only at high loads, but elongated considerably under moderate loads. We then compared the mechanical properties of nine different techniques of tendon grasping, using 159 normal infraspinatus tendons from sheep. The most commonly used simple stitch was mechanically poor: repairs with two or four such stitches failed at 184 N and 208 N respectively. A new modification of the Mason-Allen suture technique improved the ultimate tensile strength to 359 N for two stitches. Finally, we studied the mechanical properties of several methods of anchorage to bone using typically osteoporotic specimens. Single and even double transosseous sutures and suture anchor fixation both failed at low tensile loads (about 140 N). The use of a 2 mm thick, plate-like augmentation device improved the failure strength to 329 N. The mechanical properties of many current repair techniques are poor and can be greatly improved by using good materials, an improved tendon-grasping suture, and augmentation at the bone attachment