Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article:
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee. Cite this article:
The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article:
Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF. Cite this article:
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
Many aspects of total knee arthroplasty have
changed since its inception. Modern prosthetic design, better fixation techniques,
improved polyethylene wear characteristics and rehabilitation, have
all contributed to a large change in revision rates. Arthroplasty
patients now expect longevity of their prostheses and demand functional
improvement to match. This has led to a re-examination of the long-held
belief that mechanical alignment is instrumental to a successful
outcome and a focus on restoring healthy joint kinematics. A combination
of kinematic
The majority of patients with osteoarthritis present to orthopaedic surgeons seeking relief of pain and associated
Informed consent is a very important part of surgical treatment. In this paper, we report a number of legal judgements in spinal surgery where there was no criticism of the surgical procedure itself. The fault that was identified was a failure to inform the patient of alternatives to, and material risks of, surgery, or overemphasizing the benefits of surgery. In one case, there was a promise that a specific surgeon was to perform the operation, which did not ensue. All of the faults in these cases were faults purely of the consenting process. In many cases, the surgeon claimed to have explained certain risks to the patient but was unable to provide proof of doing so. We propose a checklist that, if followed, would ensure that the surgeon would take their patients through the relevant matters but also, crucially, would act as strong evidence in any future court proceedings that the appropriate discussions had taken place. Although this article focuses on spinal surgery, the principles and messages are applicable to the whole of orthopaedic surgery. Cite this article:
The posterior malleolus component of a fracture
of the ankle is important, yet often overlooked. Pre-operative CT scans
to identify and classify the pattern of the fracture are not used
enough. Posterior malleolus fractures are not difficult to fix.
After reduction and fixation of the posterior malleolus, the articular
surface of the tibia is restored; the fibula is out to length; the
syndesmosis is more stable and the patient can rehabilitate faster.
There is therefore considerable merit in fixing most posterior malleolus
fractures. An early post-operative CT scan to ensure that accurate
reduction has been achieved should also be considered. Cite this article:
The results of the DRAFFT (distal radius acute
fracture fixation trial) study, which compared volar plating with
Kirschner (K-) wire fixation for dorsally displaced fractures of
the distal radius, were published in August 2014. The use of K-wires
to treat these fractures is now increasing, with a concomitant decline
in the use of volar locking plates. We provide a critical appraisal of the DRAFFT study and question
whether surgeons have been unduly influenced by its headline conclusions. Cite this article:
There is a trend towards the use of double-bundle techniques for the reconstruction of the anterior cruciate ligament. This has not been substantiated scientifically. The functional outcome of these techniques is equivalent to that of single-bundle methods. The main advantage of a double-bundle rather than a single-bundle reconstruction should be a better rotational stability, but the validity and accuracy of systems for the measurement of rotational stability have not been confirmed. Despite the enthusiasm of surgeons for the double-bundle technique, reconstruction with a single-bundle should remain the standard method for managing deficiency of the anterior cruciate ligament until strong evidence in favour of the use of the double-bundle method is available.
An international faculty of orthopaedic surgeons
presented their work on the current challenges in hip surgery at
the London Hip Meeting which was attended by over
400 delegates. The topics covered included femoroacetabular impingement, thromboembolic
phenomena associated with hip surgery, bearing surfaces (including metal-on-metal
articulations), outcomes of hip replacement surgery and revision
hip replacement. We present a concise report of the current opinions
on hip surgery from this meeting with appropriate references to
the current literature.
From a global point of view, chronic haematogenous osteomyelitis in children remains a major cause of musculoskeletal morbidity. We have reviewed the literature with the aim of estimating the scale of the problem and summarising the existing research, including that from our institution. We have highlighted areas where well-conducted research might improve our understanding of this condition and its treatment.
There are three basic concepts that are important to the biomechanics of pedicle screw-based instrumentation. First, the outer diameter of the screw determines pullout strength, while the inner diameter determines fatigue strength. Secondly, when inserting a pedicle screw, the dorsal cortex of the spine should not be violated and the screws on each side should converge and be of good length. Thirdly, fixation can be augmented in cases of severe osteoporosis or revision. A trajectory parallel or caudal to the superior endplate can minimise breakage of the screw from repeated axial loading. Straight insertion of the pedicle screw in the mid-sagittal plane provides the strongest stability. Rotational stability can be improved by adding transverse connectors. The indications for their use include anterior column instability, and the correction of rotational deformity.
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.