Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased mechanical stress. Cite this article: Bone Joint Res 2024;13(9):452–461


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims

To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life.

Methods

Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength.