Advertisement for orthosearch.org.uk
Results 1 - 20 of 23
Results per page:
Bone & Joint 360
Vol. 13, Issue 2 | Pages 8 - 12
1 Apr 2024
Craxford S


Bone & Joint 360
Vol. 12, Issue 2 | Pages 6 - 9
1 Apr 2023
O’Callaghan J Afolayan J Ochieng D Rocos B


Bone & Joint 360
Vol. 12, Issue 6 | Pages 6 - 12
1 Dec 2023
Vallier HA Breslin MA Taylor LA Hendrickson SB Ollivere B


Bone & Joint 360
Vol. 11, Issue 6 | Pages 6 - 11
1 Dec 2022
Roberton A Stocker M Phillips J


Bone & Joint 360
Vol. 11, Issue 2 | Pages 5 - 10
1 Apr 2022
Zheng A Rocos B


Bone & Joint 360
Vol. 10, Issue 4 | Pages 5 - 11
1 Aug 2021
Kurien T Scammell BE


Bone & Joint 360
Vol. 2, Issue 1 | Pages 6 - 11
1 Feb 2013
Saw K Jee CS

Modern athletes are constantly susceptible to performance-threatening injury as they push their bodies to greater limits and endure higher physical stresses. Loss of performance and training time can adversely and permanently affect a sportsperson’s career. Now more than ever with advancing medical technology the answer may lie in biologic therapy. We have been using peripheral blood stem cells (PBSC) clinically and have been able to demonstrate that stem cells differentiate into target cells to enable regenerative repair. The potential of this technique as a regenerative agent can be seen in three broad applications: 1) articular cartilage, 2) bone and 3) soft tissue. This article highlights the successful cases, among many, in all three of these applications


Bone & Joint 360
Vol. 4, Issue 3 | Pages 2 - 6
1 Jun 2015
Sahota O

Clinical studies evaluating the effects of vitamin D alone or in combination with calcium on physical function, falls and fractures have been inconsistent. Vitamin D has, however, been the focus of much orthopaedic, trauma and endocrine research. Playing a central role in muscle and bone metabolism, some studies on Vitamin D therapies offer the tantalising suggestion of a reduction in falls and fractures simply with vitamin D supplementation. We review the background and evidence behind vitamin D


Bone & Joint 360
Vol. 9, Issue 5 | Pages 10 - 12
1 Oct 2020
Giddins GEB


Bone & Joint 360
Vol. 9, Issue 6 | Pages 5 - 11
1 Dec 2020
Sharma V Turmezei T Wain J McNamara I


Bone & Joint 360
Vol. 8, Issue 5 | Pages 4 - 10
1 Oct 2019
Tsoi K Samuel A Jeys LM Ashford RU Gregory JJ


Bone & Joint 360
Vol. 8, Issue 4 | Pages 5 - 13
1 Aug 2019
Middleton R Khan T Alvand A


Bone & Joint 360
Vol. 7, Issue 6 | Pages 2 - 8
1 Dec 2018
Murray IR Safran MR LaPrade RF


Bone & Joint 360
Vol. 7, Issue 1 | Pages 3 - 7
1 Feb 2018
Donnelly TD Woolf DK Farrar NG


Bone & Joint 360
Vol. 5, Issue 3 | Pages 2 - 6
1 Jun 2016
Raglan M Scammell B


Bone & Joint 360
Vol. 6, Issue 1 | Pages 3 - 6
1 Feb 2017
Horn A Eastwood D


Bone & Joint 360
Vol. 5, Issue 2 | Pages 3 - 6
1 Apr 2016
Patel M Eastley N Ashford R

This paper aims to provide evidence-based guidance for the general orthopaedic surgeon faced with the presentation of a potential soft tissue sarcoma in an extremity.


Bone & Joint 360
Vol. 2, Issue 6 | Pages 2 - 8
1 Dec 2013
Jones R Wood D

This article provides an overview of the role of genomics in sarcomas and describes how new methods of analysis and comparative screening have provided the potential to progress understanding and treatment of sarcoma. This article reviews genomic techniques, the evolution of the use of genomics in cancer, the current state of genomic analysis, and also provides an overview of the medical, social and economic implications of recent genomic advances.


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.


Bone & Joint 360
Vol. 2, Issue 5 | Pages 2 - 7
1 Oct 2013
Penn-Barwell JG Rowlands TK

Blast and ballistic weapons used on the battlefield cause devastating injuries rarely seen outside armed conflict. These extremely high-energy injuries predominantly affect the limbs and are usually heavily contaminated with soil, foliage, clothing and even tissue from other casualties. Once life-threatening haemorrhage has been addressed, the military surgeon’s priority is to control infection.

Combining historical knowledge from previous conflicts with more recent experience has resulted in a systematic approach to these injuries. Urgent debridement of necrotic and severely contaminated tissue, irrigation and local and systemic antibiotics are the basis of management. These principles have resulted in successful healing of previously unsurvivable wounds. Healthy tissue must be retained for future reconstruction, vulnerable but viable tissue protected to allow survival and avascular tissue removed with all contamination.

While recent technological and scientific advances have offered some advantages, they must be judged in the context of a hard-won historical knowledge of these wounds. This approach is applicable to comparable civilian injury patterns. One of the few potential benefits of war is the associated improvement in our understanding of treating the severely injured; for this positive effect to be realised these experiences must be shared.