This study evaluates the quality of patient-reported outcome measures (PROMs) reported in childhood fracture trials and recommends outcome measures to assess and report physical function, functional capacity, and quality of life using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) standards. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic review of OVID Medline, Embase, and Cochrane CENTRAL was performed to identify all PROMs reported in trials. A search of OVID Medline, Embase, and PsycINFO was performed to identify all PROMs with validation studies in childhood fractures. Development studies were identified through hand-searching. Data extraction was undertaken by two reviewers. Study quality and risk of bias was evaluated by COSMIN guidelines and recorded on standardized checklists.Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Lower limb reconstruction (LLR) has a profound impact on patients, affecting multiple areas of their lives. Many patient-reported outcome measures (PROMs) are employed to assess these impacts; however, there are concerns that they do not adequately capture all outcomes important to patients, and may lack content validity in this context. This review explored whether PROMs used with adults requiring, undergoing, or after undergoing LLR exhibited content validity and adequately captured outcomes considered relevant and important to patients. A total of 37 PROMs were identified. Systematic searches were performed to retrieve content validity studies in the adult LLR population, and hand-searches used to find PROM development studies. Content validity assessments for each measure were performed following Consensus-based Standards for the selection of health measurement Instruments (COSMIN) guidelines. A mapping exercise compared all PROMs to a conceptual framework previously developed by the study team (‘the PROLLIT framework’) to explore whether each PROM covered important and relevant concepts.Aims
Methods
Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed.Aims
Methods