Advertisement for orthosearch.org.uk
Results 1 - 20 of 236
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims. This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision. Methods. A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test. Results. The conventional and novel Attune baseplates were used in 349 (45%) and 431 (55%) patients, respectively. At a median follow-up of 14 months (IQR 11 to 25), RLLs were present in 29% (n = 228/777) and 15% (n = 116/776) of the tibial and femoral components, respectively, and were more common in the conventional compared to the novel baseplate. The novel baseplate was independently associated with a lower incidence of tibial and femoral RLLs (both regardless of age, sex, BMI, and time to radiograph). One- and three-year revision risk was 1% (95% CI 0.4% to 1.9%)and 6% (95% CI 2.6% to 13.2%), respectively. There was no difference between baseplate design and the presence of RLLs on the the risk of revision at short-term follow-up. Conclusion. The overall incidence of RLLs, as well as the incidence of tibial and femoral RLLs, was lower with the novel compared to the conventional tibial Attune baseplate design, but higher than in the predecessor design and other commonly used TKA systems. Cite this article: Bone Joint J 2024;106-B(11):1240–1248


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 56 - 63
1 Jan 2015
Abane L Anract P Boisgard S Descamps S Courpied JP Hamadouche M

In this study we randomised 140 patients who were due to undergo primary total knee arthroplasty (TKA) to have the procedure performed using either patient-specific cutting guides (PSCG) or conventional instrumentation (CI). . The primary outcome measure was the mechanical axis, as measured at three months on a standing long-leg radiograph by the hip–knee–ankle (HKA) angle. This was undertaken by an independent observer who was blinded to the instrumentation. Secondary outcome measures were component positioning, operating time, Knee Society and Oxford knee scores, blood loss and length of hospital stay. A total of 126 patients (67 in the CI group and 59 in the PSCG group) had complete clinical and radiological data. There were 88 females and 52 males with a mean age of 69.3 years (47 to 84) and a mean BMI of 28.6 kg/m. 2. (20.2 to 40.8). The mean HKA angle was 178.9° (172.5 to 183.4) in the CI group and 178.2° (172.4 to 183.4) in the PSCG group (p = 0.34). Outliers were identified in 22 of 67 knees (32.8%) in the CI group and 19 of 59 knees (32.2%) in the PSCG group (p = 0.99). There was no significant difference in the clinical results (p = 0.95 and 0.59, respectively). Operating time, blood loss and length of hospital stay were not significantly reduced (p = 0.09, 0.58 and 0.50, respectively) when using PSCG. . The use of PSCG in primary TKA did not reduce the proportion of outliers as measured by post-operative coronal alignment. . Cite this article: Bone Joint J 2015;97-B:56–63


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims. Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique. Methods. Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm. Results. There was a higher rate of tibial under-sizing posteriorly in the conventional group compared to robotic-assisted groups (47.3% (n = 44) in conventional group, 29% (n = 27) in Image-Free group, 6.5% (n = 6) in Image-Based group; p < 0.001), as well as a higher rate of femoral under-sizing posteriorly (30.1% (n = 28) in conventional group, 7.5% (n = 7) in Image-Free group, 12.9% (n = 12) in Image-Based group; p < 0.001). The posterior femoral offset was more often increased in the conventional group, especially in comparison to the Image-Based group (43% (n = 40) in conventional group, 30.1% (n = 28) in Image-Free group, 8.6% (n = 8) in Image-Based group; p < 0.001). There was no significant overhang of the femoral or tibial implant in any groups. Conclusion. Robotic-assisted surgical techniques for medial UKA decrease the risk of tibial and femoral under-sizing, particularly with an image-based system using a preoperative CT scan. Cite this article: Bone Joint J 2021;103-B(4):610–618


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups. Results. Patients undergoing conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory and localized thermal response at six hours, day 1, day 2, and day 28 after surgery. Robotic TKA had significantly reduced levels of interleukin-6 (p < 0.001), tumour necrosis factor-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after surgery compared with conventional TKA. Robotic TKA was associated with significantly improved preservation of the periarticular soft tissue envelope (p < 0.001), and reduced femoral (p = 0.012) and tibial (p = 0.023) bone trauma compared with conventional TKA. Robotic TKA significantly improved the accuracy of achieving the planned limb alignment (p < 0.001), femoral component positioning (p < 0.001), and tibial component positioning (p < 0.001) compared with conventional TKA. Conclusion. Robotic TKA was associated with a transient reduction in the early (day 7) postoperative inflammatory response but there was no difference in the immediate (< 48 hours) or late (day 28) postoperative systemic inflammatory response compared with conventional TKA. Robotic TKA was associated with decreased iatrogenic periarticular soft tissue injury, reduced femoral and tibial bone trauma, and improved accuracy of component positioning compared with conventional TKA. Cite this article: Bone Joint J 2021;103-B(1):113–122


Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims. In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA). Methods. This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge. Results. The median LOS in the RO TKA group was 76 hours (interquartile range (IQR) 54 to 104) versus 82.5 (IQR 58 to 127) in the CO TKA group (p < 0.001) and 54 hours (IQR 34 to 77) in the RO UKA versus 58 (IQR 35 to 81) in the CO UKA (p = 0.031). Discharge dispositions were comparable between the two groups. A higher percentage of patients undergoing CO TKA required PACU admission (8% vs 5.2%; p = 0.040). Conclusion. Our study showed that robotic arm assistance was associated with a shorter LOS in patients undergoing primary UKA and TKA, and no difference in the discharge destinations. Our results suggest that robotic arm assistance could be advantageous in partly addressing the upsurge of knee arthroplasty procedures and the concomitant healthcare burden; however, this needs to be corroborated by long-term cost-effectiveness analyses and data from randomized controlled studies. Cite this article: Bone Jt Open 2023;4(10):791–800


Aims. The aim of this study was to compare the migration of the femoral component, five years postoperatively, between patients with a highly cross-linked polyethylene (HXLPE) insert and those with a conventional polyethylene (PE) insert in an uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary aims included clinical outcomes and patient-reported outcome measures (PROMs). We have previously reported the migration and outcome of the tibial components in these patients. Methods. A double-blinded randomized controlled trial was conducted including 96 TKAs. The migration of the femoral component was measured with radiostereometry (RSA) at three and six months and one, two, and five years postoperatively. PROMs were collected preoperatively and at all periods of follow-up. Results. There was no clinically relevant difference in terms of migration of the femoral component or PROMs between the HXLPE and PE groups. The mean difference in migration (maximum total point motion), five years postopeatively, was 0.04 mm (95% CI -0.06 to 0.16) in favour of the PE group. Conclusion. There was no clinically relevant difference in migration of the femoral component, for up to five years between the two groups. These findings will help to establish a benchmark for future studies on migration of femoral components in TKA. Cite this article: Bone Joint J 2024;106-B(8):826–833


Bone & Joint Open
Vol. 4, Issue 3 | Pages 129 - 137
1 Mar 2023
Patel A Edwards TC Jones G Liddle AD Cobb J Garner A

Aims. The metabolic equivalent of task (MET) score examines patient performance in relation to energy expenditure before and after knee arthroplasty. This study assesses its use in a knee arthroplasty population in comparison with the widely used Oxford Knee Score (OKS) and EuroQol five-dimension index (EQ-5D), which are reported to be limited by ceiling effects. Methods. A total of 116 patients with OKS, EQ-5D, and MET scores before, and at least six months following, unilateral primary knee arthroplasty were identified from a database. Procedures were performed by a single surgeon between 2014 and 2019 consecutively. Scores were analyzed for normality, skewness, kurtosis, and the presence of ceiling/floor effects. Concurrent validity between the MET score, OKS, and EQ-5D was assessed using Spearman’s rank. Results. Postoperatively the OKS and EQ-5D demonstrated negative skews in distribution, with high kurtosis at six months and one year. The OKS demonstrated a ceiling effect at one year (15.7%) postoperatively. The EQ-5D demonstrated a ceiling effect at six months (30.2%) and one year (39.8%) postoperatively. The MET score did not demonstrate a skewed distribution or ceiling effect either at six months or one year postoperatively. Weak-moderate correlations were noted between the MET score and conventional scores at six months and one year postoperatively. Conclusion. In contrast to the OKS and EQ-5D, the MET score was normally distributed postoperatively with no ceiling effect. It is worth consideration as an arthroplasty outcome measure, particularly for patients with high expectations. Cite this article: Bone Jt Open 2023;4(3):129–137


Bone & Joint Open
Vol. 1, Issue 2 | Pages 8 - 12
18 Feb 2020
Bhimani SJ Bhimani R Smith A Eccles C Smith L Malkani A

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) has been introduced to provide accurate bone cuts and help achieve the target knee alignment, along with symmetric gap balancing. The purpose of this study was to determine if any early clinical benefits could be realized following TKA using robotic-assisted technology. Methods. In all, 140 consecutive patients undergoing RA-TKA and 127 consecutive patients undergoing conventional TKA with minimum six-week follow-up were reviewed. Differences in visual analogue scores (VAS) for pain at rest and with activity, postoperative opiate usage, and length of stay (LOS) between the RA-TKA and conventional TKA groups were compared. Results. Patients undergoing RA-TKA had lower average VAS pain scores at rest (p = 0.001) and with activity (p = 0.03) at two weeks following the index procedure. At the six-week interval, the RA-TKA group had lower VAS pain scores with rest (p = 0.03) and with activity (p = 0.02), and required 3.2 mg less morphine equivalents per day relative to the conventional group (p < 0.001). At six weeks, a significantly greater number of patients in the RA-TKA group were free of opioid use compared to the conventional TKA group; 70.7% vs 57.0% (p = 0.02). Patients in the RA-TKA group had a shorter LOS; 1.9 days versus 2.3 days (p < 0.001), and also had a greater percentage of patient discharged on postoperative day one; 41.3% vs 20.5% (p < 0.001). Conclusion. Patients undergoing RA-TKA had lower pain levels at both rest and with activity, required less opioid medication, and had a shorter LOS


Aims. The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). Methods. A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints. Results. There was no clinically relevant difference in terms of tibial component migration, insert wear, and PROMs between the HXLPE and PE groups. The mean difference in tibial component migration (maximal total point migration (MTPM)) was 0.02 mm (95% confidence interval (CI) -0.07 to 0.11), which is below the value of 0.2 mm considered to be clinically relevant. Wear after five years for HXLPE was 0.16 mm (95% CI 0.05 to 0.27), and for PE was 0.23 mm (95% CI 0.12 to 0.35). The mean difference in wear rate was 0.01 mm/year (95% CI -0.02 to 0.05) in favour of the HXLPE group. Wear is mainly present on the medial side of the insert. Conclusion. There is no clinically relevant difference in tibial component migration and insert wear for up to five years between the HXLPE conventional PE inserts. For the implant studied, the potential advantages of a HXLPE insert remain to be proven under clinical conditions at longer-term follow-up. Cite this article: Bone Joint J 2023;105-B(5):518–525


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims. The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA. Patients and Methods. This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers. Results. Robotic-arm assisted UKA was associated with reduced postoperative pain (p < 0.001), decreased opiate analgesia requirements (p < 0.001), shorter time to straight leg raise (p < 0.001), decreased number of physiotherapy sessions (p < 0.001), and increased maximum knee flexion at discharge (p < 0.001) compared with conventional jig-based UKA. Mean time to hospital discharge was reduced in robotic UKA compared with conventional UKA (42.5 hours (. sd 5.9). vs 71.1 hours (. sd. 14.6), respectively; p < 0.001). There was no difference in postoperative complications between the two groups within 90 days’ follow-up. Conclusion. Robotic-arm assisted UKA was associated with decreased postoperative pain, reduced opiate analgesia requirements, improved early functional rehabilitation, and shorter time to hospital discharge compared with conventional jig-based UKA


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Aims. The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. Methods. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model. Results. Both interventions were shown to be effective treatment options, with no significant differences shown between interventions for the primary outcome of this study (18/35 (51.4%) biphasic TKA patients vs 20/31 (64.5%) biphasic bi-UKA patients; p = 0.558). All outcomes were compared to an age-matched, healthy cohort that outperformed both groups, indicating residual deficits exists following surgery. Logistic regression analysis of primary outcome with secondary outcomes indicated that the most significant predictor of postoperative biphasic knee moments was preoperative knee moment profile and trochlear degradation (Outerbridge) (R. 2. = 0.381; p = 0.002, p = 0.046). A separate regression of alignment against primary outcome indicated significant bi-UKA femoral and tibial axial alignment (R. 2. = 0.352; p = 0.029), and TKA femoral sagittal alignment (R. 2. = 0.252; p = 0.016). The bi-UKA group showed a significant increased ability in the proprioceptive joint position test, but no difference was found in more dynamic testing of proprioception. Conclusion. Robotic arm-assisted bi-UKA demonstrated equivalence to TKA in achieving a biphasic gait pattern after surgery for osteoarthritis of the knee. Both treatments are successful at improving gait, but both leave the patients with a functional limitation that is not present in healthy age-matched controls. Cite this article: Bone Joint J 2022;103-B(4):433–443


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 559 - 564
1 May 2019
Takemura S Minoda Y Sugama R Ohta Y Nakamura S Ueyama H Nakamura H

Aims. The use of vitamin E-infused highly crosslinked polyethylene (HXLPE) in total knee prostheses is controversial. In this paper we have compared the clinical and radiological results between conventional polyethylene and vitamin E-infused HXLPE inserts in total knee arthroplasty (TKA). Patients and Methods. The study included 200 knees (175 patients) that underwent TKA using the same total knee prostheses. In all, 100 knees (77 patients) had a vitamin E-infused HXLPE insert (study group) and 100 knees (98 patients) had a conventional polyethylene insert (control group). There were no significant differences in age, sex, diagnosis, preoperative knee range of movement (ROM), and preoperative Knee Society Score (KSS) between the two groups. Clinical and radiological results were evaluated at two years postoperatively. Results. Differences in postoperative ROM and KSS were not statistically significant between the study and control groups. No knee exhibited osteolysis, aseptic loosening, or polyethylene failure. Additionally, there was no significant difference in the incidence of a radiolucent line between the two groups. One patient from the study group required irrigation and debridement, due to deep infection, at six months postoperatively. Conclusion. Clinical results were comparable between vitamin E-infused HXLPE inserts and conventional polyethylene inserts at two years after TKA, without any significant clinical failure. Cite this article: Bone Joint J 2019;101-B:559–564


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1039 - 1044
1 Aug 2008
Lützner J Krummenauer F Wolf C Günther K Kirschner S

After obtaining informed consent, 80 patients were randomised to undergo a navigated or conventional total knee replacement. All received a cemented, unconstrained, cruciate-retaining implant with a rotating platform. Full-length standing and lateral radiographs and CT scans of the hip, knee and ankle joint were carried out five to seven days after operation. No notable differences were found between computer-assisted navigation and conventional implantation techniques as regards the rotational alignment of the femoral or tibial components. Although the deviation from the transepicondylar axis was relatively low, there was a considerable range of deviation for the tibial rotational alignment. There was no statistically significant difference regarding the occurrence pattern of outliers in mechanical malalignment but the number of outliers was reduced in the navigated group


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 477 - 480
1 Apr 2007
Spencer JM Chauhan SK Sloan K Taylor A Beaver RJ

We previously compared the component alignment in total knee replacement using a computer-navigated technique with a conventional jig-based method. We randomly allocated 71 patients to undergo either computer-navigated or conventional replacement. An improved alignment was seen in the computer-navigated group. The patients were then followed up post-operatively for two years, using the Knee Society score, the Short Form-36 health survey, the Western Ontario and McMaster Universities osteoarthritis index, the Bartlett Patellar pain questionnaire and the Oxford knee score, to assess functional outcome. At two years post-operatively 60 patients were available for assessment, 30 in each group and 62 patients completed a postal survey. No patient in either group had undergone revision. All variables were analysed for differences between the groups either by Student’s t-test or the Mann-Whitney U test. Differences between the two groups did not reach significance for any of the outcome measures at any time point. At two years postoperatively, the frequency of mild to severe anterior pain was not significantly different (p = 0.818), varying between 44% (14) for the computer-navigated group, and 47% (14) for the conventionally-replaced group. The Bartlett Patellar score and the Oxford knee score were also not significantly different (t-test p = 0.161 and p = 0.607, respectively). The clinical outcome of the patients with a computer-navigated knee replacement appears to be no different to that of a more conventional jig-based technique at two years post-operatively, despite the better alignment achieved with computer-navigated surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 481 - 485
1 Apr 2007
Church JS Scadden JE Gupta RR Cokis C Williams KA Janes GC

Systemic emboli released during total knee replacement have been implicated as a cause of peri-operative morbidity and neurological dysfunction. We undertook a prospective, double-blind, randomised study to compare the cardiac embolic load sustained during computer-assisted and conventional, intramedullary-aligned, total knee replacement, as measured by transoesophageal echocardiography. There were 26 consecutive procedures performed by a single surgeon at a single hospital. The embolic load was scored using the modified Mayo grading system for echogenic emboli. Fourteen patients undergoing computer-assisted total knee replacement had a mean embolic score of 4.89 (3 to 7) and 12 undergoing conventional total knee replacement had a mean embolic score of 6.15 (4 to 8) on release of the tourniquet. Comparison of the groups using a two-tailed t-test confirmed a highly significant difference (p = 0.004). This study demonstrates that computer-assisted knee replacement results in the release of significantly fewer systemic emboli than the conventional procedure using intramedullary alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 194 - 199
1 Feb 2012
Hoffart H Langenstein E Vasak N

The aim of this prospective single-centre study was to assess the difference in clinical outcome between total knee replacement (TKR) using computerised navigation and that of conventional TKR. We hypothesised that navigation would give a better result at every stage within the first five years. A total of 195 patients (195 knees) with a mean age of 70.0 years (39 to 89) were allocated alternately into two treatment groups, which used either conventional instrumentation (group A, 97 knees) or a navigation system (group B, 98 knees). After five years, complete clinical scores were available for 121 patients (62%). A total of 18 patients were lost to follow-up. Compared with conventional surgery, navigated TKR resulted in a better mean Knee Society score (p = 0.008). The difference in mean Knee Society scores over time between the two groups was not constant (p = 0.006), which suggests that these groups differed in their response to surgery with time. No significant difference in the frequency of malalignment was seen between the two groups. In summary, computerised navigation resulted in a better functional outcome at five years than conventional techniques. Given the similarity in mechanical alignment between the two groups, rotational alignment may prove to be a better method of identifying differences in clinical outcome after navigated surgery


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 354 - 359
1 Mar 2013
Chareancholvanich K Narkbunnam R Pornrattanamaneewong C

Patient-specific cutting guides (PSCGs) are designed to improve the accuracy of alignment of total knee replacement (TKR). We compared the accuracy of limb alignment and component positioning after TKR performed using PSCGs or conventional instrumentation. A total of 80 patients were randomised to undergo TKR with either of the different forms of instrumentation, and radiological outcomes and peri-operative factors such as operating time were assessed. No significant difference was observed between the groups in terms of tibiofemoral angle or femoral component alignment. Although the tibial component in the PSCGs group was measurably closer to neutral alignment than in the conventional group, the size of the difference was very small (89.8° (. sd. 1.2) vs 90.5° (. sd. 1.6); p = 0.030). This new technology slightly shortened the bone-cutting time by a mean of 3.6 minutes (p < 0.001) and the operating time by a mean 5.1 minutes (p = 0.019), without tangible differences in post-operative blood loss (p = 0.528) or need for blood transfusion (p = 0.789). This study demonstrated that both PSCGs and conventional instrumentation restore limb alignment and place the components with the similar accuracy. The minimal advantages of PSCGs in terms of consistency of alignment or operative time are unlikely to be clinically relevant. Cite this article: Bone Joint J 2013;95-B:354–9


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 609 - 618
1 May 2014
Gøthesen Ø Espehaug B Havelin LI Petursson G Hallan G Strøm E Dyrhovden G Furnes O

We performed a randomised controlled trial comparing computer-assisted surgery (CAS) with conventional surgery (CONV) in total knee replacement (TKR). Between 2009 and 2011 a total of 192 patients with a mean age of 68 years (55 to 85) with osteoarthritis or arthritic disease of the knee were recruited from four Norwegian hospitals. At three months follow-up, functional results were marginally better for the CAS group. Mean differences (MD) in favour of CAS were found for the Knee Society function score (MD: 5.9, 95% confidence interval (CI) 0.3 to 11.4, p = 0.039), the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales for ‘pain’ (MD: 7.7, 95% CI 1.7 to 13.6, p = 0.012), ‘sports’ (MD: 13.5, 95% CI 5.6 to 21.4, p = 0.001) and ‘quality of life’ (MD: 7.2, 95% CI 0.1 to 14.3, p = 0.046). At one-year follow-up, differences favouring CAS were found for KOOS ‘sports’ (MD: 11.0, 95% CI 3.0 to 19.0, p = 0.007) and KOOS ‘symptoms’ (MD: 6.7, 95% CI 0.5 to 13.0, p = 0.035). The use of CAS resulted in fewer outliers in frontal alignment (> 3° malalignment), both for the entire TKR (37.9% vs 17.9%, p = 0.042) and for the tibial component separately (28.4% vs 6.3%, p = 0.002). Tibial slope was better achieved with CAS (58.9% vs 26.3%, p < 0.001). Operation time was 20 minutes longer with CAS. In conclusion, functional results were, statistically, marginally in favour of CAS. Also, CAS was more predictable than CONV for mechanical alignment and positioning of the prosthesis. However, the long-term outcomes must be further investigated. Cite this article: Bone Joint J 2014; 96-B:609–18


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.