We report the results of Vulpius transverse gastrocsoleus recession for equinus gait in 26 children with cerebral palsy (CP), using the Gait Profile Score (GPS), Gait Variable Scores (GVS) and movement analysis profile. All children had an equinus deformity on physical examination and equinus gait on three-dimensional gait analysis prior to surgery. The pre-operative and post-operative GPS and GVS were statistically analysed. There were 20 boys and 6 girls in the study cohort with a mean age at surgery of 9.2 years (5.1 to 17.7) and 11.5 years (7.3 to 20.8) at follow-up. Of the 26 children, 14 had spastic diplegia and 12 spastic hemiplegia. Gait function improved for the cohort, confirmed by a decrease in mean GPS from 13.4° pre-operatively to 9.0° final review (p < 0.001). The change was 2.8 times the minimal clinically important difference (MCID). Thus the improvements in gait were both clinically and statistically significant. The transverse gastrocsoleus recession described by Vulpius is an effective procedure for equinus gait in selected children with CP, when there is a fixed contracture of the gastrocnemius and soleus muscles.
Cite this article:
At our institution surgical correction of symptomatic flat foot deformities in children has been guided by a paradigm in which radiographs and pedobarography are used in the assessment of outcome following treatment. Retrospective review of children with symptomatic flat feet who had undergone surgical correction was performed to assess the outcome and establish the relationship between the static alignment and the dynamic loading of the foot.
A total of 17 children (21 feet) were assessed before and after correction of soft-tissue contractures and lateral column lengthening, using standardised radiological and pedobarographic techniques for which normative data were available.
We found significantly improved static segmental alignment of the foot, significantly improved mediolateral dimension foot loading, and worsened fore-aft foot loading, following surgical treatment. Only four significant associations were found between radiological measures of static segmental alignment and dynamic loading of the foot.
Weakness of the plantar flexors of the ankle was a common post-operative finding. Surgeons should be judicious in the magnitude of lengthening of the plantar flexors that is undertaken and use techniques that minimise subsequent weakening of this muscle group.
Cite this article:
Aims
Single event multilevel surgery (SEMLS) has been shown to improve gait in children with cerebral palsy (CP). However, there is limited evidence regarding long-term outcomes and factors influencing them.
Methods
In total 39 children (17 females and 22 males; mean age at SEMLS ten years four months, standard deviation 37 months) with bilateral CP (20 Gross Motor Function Classification System (GMFCS) level II and 19 GMFCS level III) treated with SEMLS were included. Children were evaluated using gait analysis and the Gait Deviation Index (GDI) before SEMLS and one, two to three, five and at least ten years after SEMLS. A linear mixed model was used to estimate the effect of age at the surgery, GMFCS and follow-up period on GDI.
Between July 2000 and April 2004, 19 patients with bilateral spastic cerebral palsy who required an assistive device to walk had combined lengthening-transfer of the medial hamstrings as part of multilevel surgery. A standardised physical examination, measurement of the Functional Mobility Scale score and video or instrumented gait analysis were performed pre- and post-operatively. Static parameters (popliteal angle, flexion deformity of the knee) and sagittal knee kinematic parameters (knee flexion at initial contact, minimum knee flexion during stance, mean knee flexion during stance) were recorded. The mean length of follow-up was 25 months (14 to 45).
Statistically significant improvements in static and dynamic outcome parameters were found, corresponding to improvements in gait and functional mobility as determined by the Functional Mobility Scale. Mild hyperextension of the knee during gait developed in two patients and was controlled by adjustment of their ankle-foot orthosis. Residual flexion deformity > 10° occurred in both knees of one patient and was treated by anterior distal femoral physeal stapling. Two children also showed an improvement of one level in the Gross Motor Function Classification System.
Most children with spastic hemiplegia have high levels of function and independence but fixed deformities and gait abnormalities are common. The classification proposed by Winters et al is widely used to interpret hemiplegic gait patterns and plan intervention. However, this classification is based on sagittal kinematics and fails to consider important abnormalities in the transverse plane. Using three-dimensional gait analysis, we studied the incidence of transverse-plane deformity and gait abnormality in 17 children with group IV hemiplegia according to Winters et al before and after multilevel orthopaedic surgery.
We found that internal rotation of the hip and pelvic retraction were consistent abnormalities of gait in group-IV hemiplegia. A programme of multilevel surgery resulted in predictable improvement in gait and posture, including pelvic retraction. In group IV hemiplegia pelvic retraction appeared in part to be a compensating mechanism to control foot progression in the presence of medial femoral torsion. Correction of this torsion can improve gait symmetry and function.
Our aim in this retrospective study of 52 children with spastic hemiplegia was to determine the factors which affected the amount of residual pelvic rotation after single-event multilevel surgery.
The patients were divided into two groups, those who had undergone femoral derotation osteotomy and those who had not. Pelvic rotation improved significantly after surgery in the femoral osteotomy group (p < 0.001) but not in the non-femoral osteotomy group. Multiple regressions identified the following three independent variables, which significantly affected residual pelvic rotation: the performance of femoral derotation osteotomy (p = 0.049), the pre-operative pelvic rotation (p = 0.003) and the post-operative internal rotation of the hip (p = 0.001).
We concluded that there is a decrease in the amount of pelvic rotation after single-event multilevel surgery with femoral derotation osteotomy. However, some residual rotation may persist when patients have severe rotation before surgery.
Extensive limb lengthening may be indicated in achondroplastic patients who wish to achieve a height within the normal range for their population. However, increasing the magnitude of lengthening is associated with further complications particularly adjacent joint stiffness and fractures. We studied the relationship between the magnitude of femoral lengthening and callus pattern, adjacent joint stiffness and fracture of the regenerate bone in 40 femoral lengthenings in 20 achondroplastic patients. They were divided into two groups; group A had lengthening of less than 50% and group B of more than 50% of their initial femoral length. The patterns of radiological callus formation were classified according to shape, type and features. The incidence of callus features, knee stiffness and regenerate bone fracture were analysed in the two groups. Group B was associated with an increased incidence of concave, lateral and central callus shapes, adjacent joint and stiffness and fracture. Statistically, the incidence of stiffness in adjacent joints and regenerate bone fracture was significantly associated with the magnitude of lengthening.
We suggest that careful radiological assessment of the patterns of callus formation is a useful method for the evaluation and monitoring of regenerate bone.
This study compares the initial outcomes of minimally invasive techniques for single-event multi-level surgery with conventional single-event multi-level surgery. The minimally invasive techniques included derotation osteotomies using closed corticotomy and fixation with titanium elastic nails and percutaneous lengthening of muscles where possible. A prospective cohort study of two matched groups was undertaken. Ten children with diplegic cerebral palsy with a mean age of ten years six months (7.11 to 13.9) had multi-level minimally invasive surgery and were matched for ambulatory level and compared with ten children with a mean age of 11 years four months (7.9 to 14.4) who had conventional single-event multi-level surgery. Gait kinematics, the Gillette Gait Index, isometric muscle strength and gross motor function were assessed before and 12 months after operation.
The minimally invasive group had significantly reduced operation time and blood loss with a significantly improved time to mobilisation. There were no complications intra-operatively or during hospitalisation in either group. There was significant improvement in gait kinematics and the Gillette Gait Index in both groups with no difference between them. There was a trend to improved muscle strength in the multi-level group. There was no significant difference in gross motor function between the groups.
We consider that minimally invasive single-event multi-level surgery can be achieved safely and effectively with significant advantages over conventional techniques in children with diplegic cerebral palsy.