The application of
Aims. Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions. Methods. The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality. Results. Among the 3,669 articles retrieved, 21 studies on 19 series of patients were included. A total of 3,074 patients (59.5% female and 40.5% male; mean age 65.2 years (SD 3.9); mean BMI 27.4 kg/m. 2. (SD 2.2)) were analyzed. R-UKA obtained a superior Knee Society Score improvement compared to C-UKA (mean difference (MD) 4.9; p < 0.001) and better Forgotten Joint Score postoperative values (MD 5.5; p = 0.032). The analysis of radiological outcomes did not find a statistically significant difference between the two approaches. R-UKA showed longer operating time (MD 15.6; p < 0.001), but reduced complication and revision rates compared to C-UKA (5.2% vs 10.1% and 4.1% vs 7.2%, respectively). Conclusion. This meta-analysis showed that the
Aims. This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO
Aims. The aims of this systematic review were to assess the learning curve of semi-active
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA). A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.Aims
Methods
Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics. A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers.Aims
Materials and Methods