Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1654 - 1661
1 Dec 2020
Perelgut ME Polus JS Lanting BA Teeter MG

Aims

The direct anterior (DA) approach has been associated with rapid patient recovery after total hip arthroplasty (THA) but may be associated with more frequent femoral complications including implant loosening. The objective of this study was to determine whether the addition of a collar to the femoral stem affects implant migration, patient activity, and patient function following primary THA using the DA approach.

Methods

Patients were randomized to either a collared (n = 23) or collarless (n = 26) cementless femoral stem implanted using the DA approach. Canal fill ratio (CFR) was measured on the first postoperative radiographs. Patients underwent a supine radiostereometric analysis (RSA) exam postoperatively on the day of surgery and at two, four, six, 12, 26, and 52 weeks postoperatively. Patient-reported outcome measures (Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index, the 12-item Short Form Health Survey Mental and Physical Score, and University of California, Los Angeles (UCLA) Activity Score) were measured preoperatively and at each post-surgery clinic visit. Activity and function were also measured as the weekly average step count recorded by an activity tracker, and an instrumented timed up-and-go (TUG) test in clinic, respectively.


Bone & Joint Open
Vol. 1, Issue 10 | Pages 653 - 662
20 Oct 2020
Rahman L Ibrahim MS Somerville L Teeter MG Naudie DD McCalden RW

Aims

To compare the in vivo long-term fixation achieved by two acetabular components with different porous ingrowth surfaces using radiostereometric analysis (RSA).

Methods

This was a minimum ten-year follow-up of a prospective randomized trial of 62 hips with two different porous ingrowth acetabular components. RSA exams had previously been acquired through two years of follow-up. Patients returned for RSA examination at a minimum of ten years. In addition, radiological appearance of these acetabular components was analyzed, and patient-reported outcome measures (PROMs) obtained.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims

The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle.

Patients and Methods

We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 911 - 916
1 Jul 2015
Del Balso C Teeter MG Tan SC Lanting BA Howard JL

Tribocorrosion at the head–neck taper interface – so-called ‘taperosis’ – may be a source of metal ions and particulate debris in metal-on-polyethylene total hip arthroplasty (THA).

We examined the effect of femoral head length on fretting and corrosion in retrieved head–neck tapers in vivo for a minimum of two years (mean 8.7 years; 2.6 to 15.9). A total of 56 femoral heads ranging from 28 mm to 3 mm to 28 mm + 8 mm, and 17 femoral stems featuring a single taper design were included in the study. Fretting and corrosion were scored in three horizontally oriented concentric zones of each taper by stereomicroscopy.

Head length was observed to affect fretting (p = 0.03), with 28 mm + 8 mm femoral heads showing greater total fretting scores than all other head lengths. The central zone of the femoral head bore taper was subject to increased fretting damage (p = 0.01), regardless of head length or stem offset. High-offset femoral stems were associated with greater total fretting of the bore taper (p = 0.04).

Increased fretting damage is seen with longer head lengths and high-offset femoral stems, and occurs within a central concentric zone of the femoral head bore taper. Further investigation is required to determine the effect of increased head size, and variations in head–neck taper design.

Cite this article: Bone Joint J 2015; 97-B:911–16.