Receive monthly Table of Contents alerts from Orthopaedic Proceedings
Comprehensive article alerts can be set up and managed through your account settings
View my account settings
Aged trauma patients with proximal femur fractures are prone to various complications. They may be associated with their comorbidities which also need to be adressed. These complications limit the patient”s postoperative health status and subsequently their activity and independency. As an attempt to improve the postoperative management of aged hip fracture patients a better understanding of the postoperative condition in these patients is necessary. Therefore, this meta-analysis is intended to provide an overview of postoperative complications in the elderly hip fracture patients and to improve the understanding of an adequate postoperative management. Medline was used to screen for studies reporting on the complication rates of hip fracture patients > 65 years. The search criteria were: “proximal femur fracture, elderly, complication”. In addition to surgical studies, internal medicine and geriatric studies were also included. Randomized studies, retrospective studies as well as observation studies were included. Furthermore, reoperation rates as well as treatment-related complications were recorded. The 1-year mortality was calculated as outcome parameter.Introduction
Material and method
To evaluate the association of BMI and improvement in patient-reported outcomes after TKA. Knee replacement outcome data for procedures carried out over an eight month period was extracted from a regional arthroplasty register in the UK. Data was available before surgery and 12 months after. We analysed the impact of overweight on post-operative change in the Forgotten Joint Score − 12 (FJS-12) measuring joint awareness and the Oxford Knee Score (OKS) measuring pain and function using five BMI categories (A: <25, B: 25–29.9, C: 30–34.9, D: 35–39.9 and E: >40).Aim
Methods
Today TKR is considered one of the most successful operative procedures in orthopedic surgery. Nevertheless, failure rates of 2 – 10% depending on the length of the study and the design are still reported. This provides evidence for further development in knee arthroplasty. Particularly the oxide ceramics used now in THA show major advantages due to their excellent tribological properties, their significantly reduced third-body wear as well as their high corrosion resistance. A further advantage of ceramic materials is their potential use in patients with metal allergy. Metallic wear induces immunological reactions resulting in hypersensitivity, pain, osteolysis and implant loosening. The purpose of our study was to examine the safety of the tibial component of a novel all-ceramic TKR. We tested the tibial components of the primary knee implant BPK-S Integration Ceramic. Both the tibial and the femoral component consist of BIOLOX®delta ceramic The standards ISO 14879-1 and ASTM F1800-07 describe the test set-up for the experimental fatigue strength testing of tibial components from knee implants. We conducted the testing with a significantly increased maximum load of 5,300 N (900 N are required). A final burst strength test was carried out after the fatigue load testing in the same embedding and with the same test set-up.Introduction
Materials and Methods
Accurate implant orientation is associated with improved outcomes after artificial joint replacement. We investigated if a novel augmented-reality (AR) platform (with live feedback) could train novice surgeons to orientate an acetabular implant as effectively as conventional training (CT). Twenty-four novice surgeons (pre-registration level medical students) voluntarily participated in this trial. Baseline demographics, data on exposure to hip arthroplasty, and baseline performance in orientating an acetabular implant to six patient-specific values on a phantom pelvis, were collected prior to training. Participants were randomised to a training session either using a novel AR headset platform or receiving one-on-one tuition from a hip surgeon (CT). After training, they were asked to perform the six orientation tasks again. The solid-angle error in degrees between the planned and achieved orientations was measured using a head-mounted navigation system.Background
Methods
Adequate pain management is mandatory for patients' early rehabilitation and improvement of outcome after total knee arthroplasty (TKA). Conventional pain management, consisted of mainly opioids, has some adverse effects such as dizziness and nausea. Motor blockade occasionally resulted from epidural analgesics. A novel multimodal analgesic strategy with peripheral nerve block, peri-articular injection (PAI) and intravenous patient controlled analgesia (IVPCA) were utilized for our patients receiving TKA. In this study, we compared the clinical efficacy and adverse effects in the group of multimodal analgesia (MA) or epidural analgesia alone. One hundred and eighteen patients undergoing TKA with spinal anesthesia were enrolled. Patients of TKA received either our protocol of multimodal analgesia or patient controlled epidural analgesia (PCEA) alone. MA included ultrasound guided nerve block in femoral and obturator nerves before spinal anesthesia, and PAI mixed with NSAID, morphine, ropivacaine and epinephrine, as well as IVPCA after surgeries. The analgesic effect with numeric rating scale (NRS) and occurrence of adverse effects, including motor blockade, numbness, postoperative nausea/vomiting (PONV), and dizziness were recorded for all patients.Background
Methods
To aid recovery, rehabilitation is an important adjunct to surgery. Acknowledging the MRC framework for complex interventions we assessed the evidence-base for components of comprehensive rehabilitation in total hip (THR) and total knee replacement (TKR) pathways. We conducted systematic reviews and meta-analyses of randomised controlled trials (RCT) of pre-surgical exercise and education, occupational therapy and post-operative physiotherapy. In feasibility RCTs we explored acceptability of pain self-management and occupational therapy before THR, and physiotherapy after TKR. We searched trial registers for ongoing RCTs.Background
Methods
Complete Abductor Detachament, Direct Lateral Approach, Abductor Insuffenciency, Hip Arthroplasty Approach of Total hip replacement (THR) is a very important part of the surgery, the approach dictates the postoperative complications. Lateral approach is one of the most commonly used approaches. The initial lateral approach relied on bony (trochanteric) osteotomy which was later modified to tendon detachment, there are many versions of the lateral approach but the main goal is to detach the hip abductors mechanism to gain access to the underlying joint. One of the modifications is to completely detach the abductors tendon, this offers superior exposure compared to the traditional partial detachment (Hardinge) approach.Keywords
Backgroung
Prosthetic implants used in primary total hip replacements have a range of bearing surface combinations (metal-on-polyethylene, ceramic-on-polyethylene, ceramic-on-ceramic, metal-on-metal); head sizes (small <36mm, large 36mm+); and fixation techniques (cemented, uncemented, hybrid, reverse hybrid), which influence prosthesis survival, patient quality of life, and healthcare costs. This study compared the lifetime cost-effectiveness of implants to determine the optimal choice for patients of different age and gender profiles. In an economic decision Markov model, the probability that patients required one or more revision surgeries was estimated from analyses of UK and Swedish hip joint registries, for males and females aged <55, 55–64, 65–74, 75–84, and 85+ years. Implant and healthcare costs were estimated from hospital procurement prices, national tariffs, and the literature. Quality-adjusted life years were calculated using utility estimates, taken from Patient-Reported Outcome Measures data for hip procedures in the UK.Background
Methods
Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis.Introduction
Objetive
The THR is the second most successful and cost-effective surgical procedure of all time. Data shows that hip cup failure is a significant problem. The aim of this study is to improve methods of cemented cup fixation through validation experiments and FEA. Five Sawbones composite pelves with cemented UHMWPE cups were tested. Each pelvis was instrumented with triaxial strain gauges at four locations of predicted high strain. Each sample (n = 5) was bolted at the sacroiliac joint in a uniaxial testing machine. A load of 500 N was applied in the direction of the peak force during normal walking, for five repetitions. The directional surface strains were used to evaluate the equivalent strain. Specimen specific finite element models were developed based on CT scan data using ScanIP. Each mesh consisted of an average of 2.5 million linear tetrahedral elements and was solved in ANSYS.Introduction
Methods
Aged trauma patients are at high risk for various comorbidities and loss of function following hip fracture. Consequently a multidisciplinary approach for the treatment of these patients has become more famous in order to maintain the patients” activity level and health status prior to trauma. This study evaluates the effect of a multidisciplinary inpatient rehabilitation on the short- and long-term functional status of geriatric patients following hip fracture surgery. A collective of 158 hip fracture patients (> 80 years) who underwent surgery were included in this study. An initial Barthel Index lower than 30 points was a criteria to exclude patients from this study. Two subgroups, depending on the availability of treatment spots at the rehabilitation center were made. No other item was used to discriminated between the groups. Group A (n=95) stayed an average of 21 days at an inpatient rehabilitation center specialized in geriatric patients. Group B (n=63) underwent the standard postoperative treatment. As main outcome parameter we used the Barthel Index, which was evaluated for every patient on the day of discharge and checkups after three, six and twelve months.Objectives
Methods
The Arthroplasty Pain Experience (APEX) studies are two randomised controlled trials in primary total hip (THR) and knee replacement (TKR) at a large UK orthopaedics centre. APEX investigated the effect of local anaesthetic wound infiltration (LAI), administered before wound closure, in addition to standard analgesia, on pain severity at 12 months. This abstract reports results of the within-trial economic evaluations. Cost-effectiveness was assessed from the health and social care payer perspective in relation to quality adjusted life years (QALYs). Resource use was collected from hospital records and patient-completed postal questionnaires, and valued using unit cost estimates from local NHS Trust and national tariffs. Missing data were imputed using chained equations. Costs and outcomes were compared per trial arm and plotted in cost-effectiveness planes. The economic results were bootstrapped incremental net monetary benefit statistics (INMB) and cost-effectiveness acceptability curves. One-way deterministic sensitivity analyses explored any methodological uncertainty.Background
Methods
To investigate the validity of threshold values for the Oxford Hip and Knee Score (OHS and OKS) for treatment success 12 months after total knee or hip replacement. Questionnaires were administered to patients undergoing total hip (THA) or knee (TKA) replacement before and 12 months after surgery alongside questions assessing key accepted aspects of treatment success (satisfaction, pain relief, functional improvement) to form a composite criterion of success and assessed using receiver operator characteristic (ROC) analysis. Thresholds providing maximum sensitivity and specificity for predicting treatment success were determined for the total sample and subgroups defined by pre-surgery scores.Aim
Methods
The R3 cementless acetabular system (Smith & Nephew, Memphis, Tennessee, United States) is a modular titanium shell with an asymmetric porous titanium powder coating. It supports cross-linked polyethylene, metal and ceramic liners with several options for the femoral head component. The R3 cup was first marketed in Australia and Europe in 2007. Two recent papers have shown high failure rates of the MoM R3 system with up to 24% (Dramis et al 2014, Hothi et al 2015). There are currently no medium term clinical papers on the R3 acetabular cup. The aim of the study is to review our results of the R3 acetabular cup with a minimum of 5 year follow up.Background
Objectives
Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell metabolism thereby possibly contributing to inferior bone quality. In order to explore this hypothesis, we investigated and compared metabolic parameters in osteoblasts and osteoclasts isolated from SP- and α-CGRP-deficient mice and wildtype (WT) controls. Bone marrow-derived macrophages (BMMs) and osteoblast-like cells from female C57Bl/6J (WT-control), Tac1-deficient (Tac1-/−) and α-CGRP-deficient (α-CGRP-/−) mice were isolated and differentiated according to established protocols ( We observed reduced numbers of BMM from Tac1-/− and α-CGRP-/− mice after initial seeding compared to WT but no changes in viability. Osteoblast-like cells from Tac1-/− mice tend to migrate out faster from bone chips compared to WT-controls whereas migration of osteoblast-like cells from α-CGRP-/− mice was not affected. Osteoblasts and osteoclast/BMM cultures from WT mice endogenously synthesize and secrete SP as well as α-CGRP at a picomolar range. We found no changes regarding BMM or osteoblast proliferation from both, Tac1-/− and α-CGRP-/− mice when compared to WT-controls. Caspase 3/7-activity was reduced by trend in osteoclast/BMM cultures of α-CGRP-/− mice and significantly reduced in osteoclast/BMM cultures of Tac1-/− mice compared to WT-controls. We found significantly higher Caspase 3/7-activity in osteoblasts of Tac1-/− mice after 14 days of osteogenic culture conditions when compared to WT-controls whereas osteoblasts of α-CGRP-/− mice were unaffected. Cathepsin K enzyme activity was significantly reduced in osteoclast/BMM cultures of Tac1-/− and α-CGRP-/− mice compared to WT-controls. ALP activity of Tac1-/− osteoblasts was higher after 7 days and reduced after 21 days of osteogenic culture compared to WT-controls whereas ALP activity of osteoblasts of α-CGRP-/− mice was unchanged. Acccording to our in vitro observations, we suggest some reduction in bone resorption rate but concomitantly a reduction in bone formation rate in Tac1-/− mice compared to WT-controls resulting in a net bone loss in these mice as bone resorption is faster than bone formation. Furthermore, we assume that bone resorption rate is slightly reduced in α-CGRP-/− mice but bone formation rate seems to be unchanged. Therefore we hypothesize that additional conditions present
Since the development of biomimetic and ceramic bone reconstructive in the early 1970, these specialised bioreactors intended for bone or cartilage regeneration have come a long way in trying to design an alternative procedure other than autogenous bone grafting. However, all known biomaterials still fall short of inducing substantial bone formation
Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features in the progression of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral bone integrity diminishment remained elusive. This study was undertaken to characterize behavior and intracellular signaling of subchondral mesenchymal stem cells (SMSCs) and bone-marrow MSCs (BMMSCs) in OA knees isolated from patients with end-stage knee OA underwent total knee arthroplasty. The SMSCs isolated from subchondral bone explants expressed remarkable surface antigens CD73, CD105, CD90, CD166, CD44, CD29, instead of MHC II, CD45, and CD31. The cell cultures exhibited high proliferation capacity concomitant with low population doubling time compared to those of BMMSCs. Incubation in differentiation media, the SMSCs showed high osteogenic and chondrogenic lineage commitment and low adipogenic differentiation potential. They also exhibited high expression of embryonic stem cell marker OCT3/4, osteogenic factors Wnt3a, β-catenin and microRNA-29a (miR-29a) in conjunction with low expression of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNFα, and MMP3. Loss of miR-29a function lowered HDAC4 level, mineralized matrix accumulation and osteogenic marker expression of SMSCs. miR-29a reduced HDAC4 translation through targeting the 3”-untranslated region of HDAC4, which concomitantly sustained Wnt3a and β-catenin signaling. Collectively, high osteogenic lineage commitment existed in the SMSCs in OA knee microenvironment. miR-29a modulation of HDAC4 and Wnt3a signaling contributed to the increases in osteogenesis. This study shines a light no the biological role of MSCs in subchondral compartment in the end-stage OA development and highlights a new source of MSCs for joint tissue repair.
The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted hypertrophic differentiation of the generated tissue due to endochondral ossification. Continuing on our earlier studies, our goal is to further improve the engineering of hyaline cartilage for the treatment of a cartilage defect in our A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded (n=7) or supplemented (n=7) with 2% (w/v) bovine aggrecan (Sigma-Aldrich). After 14 days, rabbits were euthanised. Generated subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry was performed for key markers of different phases of endochondral ossification.INTRODUCTION
METHODS
Bone healing especially in elderly patients is a complex process with limited therapeutic options. In recent years the use of BMP2 for fracture healing is investigated extensively. However, for many applications superficial amounts of BMP2 were required for efficacy due to the absence of sustained release carriers and severe side effects have reported thereby limiting the use of BMP2. Here we present an alternative method based on the use of a combination of low molecular weight compounds, testosterone and alendronate, with established safety profiles in men. Moreover, in contrast to BMP2 which activates both osteoblasts and osteoclasts, this combination of drugs enhances osteoblast activity but simultaneously inhibits osteoclast activity resulting in a net effect of bone growth. Human primary osteoblasts were obtained from bone of patients requiring knee prostheses and cultured in the presence of various concentrations testosterone with and without alendronate. Optimal concentrations were selected and used to stimulate 5×8 mm porcine bone biopsies for 4 weeks. Medium was exchanged regularly and ALP activity was determined. At endpoint biopsies were analyzed in a MicroCT (Bruker Skyscan 1076) to analyze bone volume (BV), trabecular thickness (Tb.Th) and tissue volume (TV). Bone strength was measured using Hounsfield (H10KT) test equipment. The data obtained showed a significant and dose dependent increase in ALP activity of primary osteoblasts (day 7–10) indicating robust activation of osteoblast activity. Optimal and synergistic ALP activation was observed when treating cells with 15–375 nM testosterone in combination with 2 μM alendronate. Significant inhibition (75%) of osteoclast activity was observed by alendronate (2–10 μM) which was further enhanced by high testosterone levels. This concept was further tested in bovine bone biopsies cultured for 4 weeks in the presence of 75 nM testosterone and 2 μM alendronate. MicroCT analysis of the biopsies revealed a ± 40% increase in both bone volume (trabecular and cortical bone) and bone strength. Moreover bone mineral density was increased by 20% indicating increased mineralization of bone tissue. Treatment of human primary osteoblasts or human or bovine bone explants with a combination of an androgen (testosterone) and a bisphosphonate (alendronate) significantly enhance bone growth and bone mineral density. Moreover, bone strength was increased indicating the formation of high quality bone tissue. These findings are the basis for the development of sustained release materials to be applied locally at the bone fracture site, which would allow for low amounts of the drugs and no systemic exposure. By encapsulating testosterone and alendronate in a biodegradable polymer coating, a sustained release up to 5 weeks can be achieved, and the loaded coating can be applied in combination with collagen membranes to improve bone healing or as a coating onto implants to improve osseo-integration.
For many years, minimally invasive joint-preserving regenerative therapy has been desired for the early stages of osteonecrosis of the femoral head (ONFH). In an animal study using adult rabbits, we reported that a single local injection of rhFGF-2-impregnated gelatin hydrogel, which has superior slow-release characteristics, suppresses the progression of femoral head necrosis. The purpose of this study was to evaluate the safety and clinical outcomes of a single local administration of rhFGF-2-impregnated gelatin hydrogel for the precollapse stage of ONFH. Patients and Methods: Ten patients with femoral heads up to precollapse stage 2 underwent a single local administration of 800-µg rhFGF-2-impregnated gelatin hydrogel and were followed up for two years. The eligibility criteria were age between 20 and 80 years and presence of ONFH at precollapse stage 1 or 2 according to the classification system for ONFH developed by the Japanese Investigation Committee of Health and Welfare. Primary outcomes included adverse events and complications. Secondary outcomes included changes in Harris Hip Scores (HHS), visual analog scale pain scores (VAS), the University of California, Los Angeles (UCLA) activity rating scores, radiological changes as determined via radiographs, computed tomography (CT) scans, and magnetic resonance imaging (MRI) of the hip joint. Results: We included five men (five hips) and five women (five hips), with a mean age of 39.8 years (range: 29–53 years) at the time of surgery. Eight patients had bilateral ONFH, three had already undergone THA on the contralateral side. Eight patients were receiving treatment with corticosteroid therapy, and two patients overused alcohol. Stage 1 and 2 disease was present in one and nine patients, respectively. One patient each had type A, type B, and type C1 disease, whereas seven patients had a type C2 lesion. All Adverse events were recovered without problem. The surgery was performed with a minimally invasive technique based core decompression (1 cm of skin incision), and walking was allowed from the day after surgery. Mean clinical scores improved significantly after three year compared with before surgery (before vs. after: VAS for pain, 21.2 vs. 5.3 mm; UCLA activity score 5.5 vs. 6.6; HHS, 81.0 vs. 98.4 points, respectively). There was only one case of femoral head collapse, and it had the greatest necrosis volume fraction and was considered to be in the early collapse stage at the time of operation. The other nine cases did not involve ONFH stage progression, and collapse was prevented. CT images and recent MRI postoperatively confirmed bone regeneration and reduction of the necrotic area. Conclusion: Clinical application of rhFGF-2-impregnated gelatin hydrogel for patients with precollapse stage of ONFH was feasible and safe. Our research is ongoing, further phase II multiple center study has been started in January 2016.Introduction
Endochondral ossification in the growth plate is directly responsible for skeletal growth and its Healthy skeletally immature (5 weeks old) C57BL/6 mice were treated for ten weeks with celecoxib (daily oral administration 10 mg/kg) or placebo (water) (institutional approval 2013–094) (n=12 per group). At 15 weeks postnatally, total growth plate thickness, the thickness of specific growth plate zones, (immuno)histological analysis of extracellular matrix composition in the growth plate, cell number and cell size, longitudinal bone growth and bone micro-architecture by micro-CT were analysed. Inhibition of COX-2 activity was confirmed by determining PGE2 levels in plasma using an ELISA.INTRODUCTION
METHODS
Osteoarthritis (OA), a common degenerative disorder of synovial joints, is characterized by disruption of the extracellular matrix (ECM) homeostasis with an overall misbalance towards cartilage catabolism. Integrins are alpha/beta heterodimeric transmembrane proteins transmitting chemical and biomechanical signals into the cells. There is a growing consensus that changes of ECM composition by proteolytic degradation of matrix constituents, or alteration of the biomechanical microenvironment of chondrocytes caused by chronic stress or injury significantly increase the risk of OA through the perturbation of integrin signaling. In order to further investigate the role of the b1 integrin subfamily in OA, we have challenged hip cartilage explants dissected for mice lacking beta1 integrins in chondrocytes by cytokines, ECM degradation products or mechanical stimulation. Femoral articular cartilages were avulsed from hip joints of 6 weeks old wild type (WT) and b1fl/fl-PrxCre mutant (MT) mice. For the chemically-induced OA-like stimulation, femoral caps were cultured for 3 days in serum-free DMEM/F12 with or without the supplementation of interleukin-1a (IL1a), 120kDa cell-binding fibronectin fragments (120FNf), or tumor necrosis factor-alpha (TNFa) + oncostatin M (OM). Sulphated glycosaminoglycan (sGAG) release of the explants were measured in the supernatants by the 1,9-dimethylmethlene blue (DMMB) assay. Proteoglycan loss was monitored by Safranin-O (SO) staining on cryo-sections of the explants. For the cartilage injury model, avulsed femoral caps were either directly snap-frozen or kept in serum-free DMEM/F12 for 4 hours before snap-freezing. Gene expression changes were analyzed by quantitative RT-PCR using a pre-determined set of genes regulated by injury.Background
Methods
Elevated remodelling of subchondral bone and marrow tissues has been firmly established as diagnostic and prognostic radiological imaging marker for human osteoarthritis. While these tissues are considered as promising targets for disease-modifying OA drugs, the development of novel treatment approaches is complicated by the lack of knowledge whether similar tissue changes occur in rodent OA models and poor understanding of joint-specific molecular and cellular pathomechanisms in human OA. Here, we describe the establishment of a human OA explant model to address this crucial niche in translational preclinical OA research. Osteochondral (knee, spine) and bone (iliac crest) clinical specimens were acquired from patients undergoing total knee arthroplasty (Introduction
Methods
In order to effectively utilize mechanical signals in the clinic as a non-drug-based intervention to improve cartilage defect regeneration after surgical treatment, it is essential to identify crucial components of the cellular response that are typical to the anabolic process. The mechanisms behind the effect of mechanical stimulation are, however, not fully understood and the signaling pathways involved in the anabolic response of chondrocytes to mechano-transduction are not well described. Therefore, a genome-wide identification of mechano-regulated genes and candidate pathways in human chondrocytes subjected to a single anabolic loading episode was performed in this study and time evolution and re-inducibility of the response was characterized. Osteochondral constructs consisting of a chondrocyte-seeded collagen-scaffold connected to β-tricalcium-phosphate were pre-cultured for 35 days and subjected to dynamic compression (25% strain, 1 Hz, 9×10 minutes over 3h) before microarray-profiling was performed. Proteoglycan synthesis was determined by 35S-sulfate-incorporation over 24 hours. Protein alterations were determined by Western blotting.Objective
Design
Collagen is the predominant component of extracellular matrix in various connective tissues and makes up to 25% to 35% of the whole protein content in animal bodies. Type II collagen was first introduced from chicken sternal cartilage and presents supportive function in cartilaginous tissue. Since type II collagen is the major component of cartilage in joint, this study is aiming to determine an optimal type II collagen material for the development of medical devices for articular cartilage regeneration. In order to make more effective use of underutilized food waste, type II collagens from mammalian tissue sources (porcine tracheal cartilage; auricular cartilage; articular cartilage) and marine tissue sources (cuckoo ray, blonde ray, thorn back ray, lesser spotted dogfish) were isolated through acid-pepsin digestion under 4°C and characterized by various biological, biochemical and biophysical analysis. Pepsin cleaves the telopeptide region of the collagen molecule and pepsin treated collagen extraction ensures higher collagen yield. Telopeptide-free collagen reveals cytocompatibility, biodegradability and lower toxicity. The number and size of collagen chains were revealed by SDS-polyacrylamide gel electrophoresis. Intermolecular crosslinking density was quantified by Ninhydrin assay. Thermal stability was tested by differential scanning calorimetry (DSC) and enzymatic degradation was assessed by collagenase assay. Human chondrocytes were seeded on to collagen sponges at a density of 30,000 cells per sponge. Cell morphology (DAPI/ Rhodamine Phalloidin), viability(LIVE/DEAD®), proliferation(PicoGreen®) and metabolic activity (alamarBlue®) were analysed. Quantitative morphometric analysis was carried out using ImageJ software. Porcine articular cartilage and cartilaginous fishes yield high purity type II collagen. Type II collagen isolated from cartilaginous fishes exhibited similar crosslinking density and thermal stability. Among various porcine cartilaginous tissues, articular cartilage was the most resistant to enzymatic degradation and female trachea exhibited the highest cross-linking density. The biological, biochemical and thermal properties of type II collagen are dependent on the tissue and gender from which the collagen was extracted.Introduction
Conclusion
Cryotherapy is often applied after injuries of synovial joints. Although positive clinical effects on periarticular swelling and pain are well known, the effects on molecular processes of cartilage and synovial cells remained largely unknown so far. Therefore, the hypothesis was tested that hypothermia alleviates the synovial reaction and prevents chondrocyte death as well as cartilage destructive processes after blunt trauma. Human articular cartilage and synovial tissue was obtained with informed consent from patients undergoing knee joint replacement. Cartilage explants from macroscopically intact cartilage were impacted by a drop-tower apparatus with defined energy (0.59J) and cultivated for 24h or 7d at following temperature conditions: 2h, 16h or throughout at 27°C and afterwards or throughout at 37°C. Furthermore, human fibroblast-like synoviocytes (FLS) were stimulated with conditioned medium from traumatized cartilage (t-CM) and cultivated as indicated above up to 4d. Effects of hypothermia were evaluated by live/dead assay, gene expression (RQ-PCR), and type II collagen synthesis/cleavage as well as release of MMP-2, MMP-13 and IL-6 on protein level (ELISA, gelatin zymography). Statistical analysis was performed by 2-way ANOVA. The experimental study was performed in the research laboratory of the Orthopedic Department, University Hospital Ulm, Germany. Hypothermic treatment significantly improved chondrocyte viability 7d after blunt cartilage trauma (2h: p=0.016; 16h: p=0.036; throughout: p=0.039). 2h posttraumatic hypothermia attenuated expression of MMP-13 (m-RNA: p=0.012; protein: p=0.024). While type II collagen synthesis was significantly increased after 16h hypothermia, MMP-13 expression (mRNA: p=0.003; protein: p<0.001) and subsequent cleavage of type II collagen (p=0.049) were inhibited. Continuous hypothermia for 7d further significantly suppressed MMP release (proMMP-2, active MMP-2 and MMP-13) and type II collagen breakdown. On day 4 t-CM stimulated FLS revealed significantly suppressed gene expression of matrix-destructive enzymes (16h: ADAMTS-4; throughout: ADAMTS-4, MMP-3, MMP-13) and by trend reduced IL-6 expression in case of 16h or continuous hypothermia. Overall, hypothermia for only 2h and/or 16h after blunt cartilage trauma exhibited significant cell- and matrix-protective effects and promoted anabolic activity of surviving chondrocytes. Expression of matrix-destructive enzymes by FLS stimulated with Danger Associated Molecular Patterns (DAMPs) released from traumatized cartilage was attenuated by more prolonged hypothermia. These findings suggest that an optimized cryotherapy management after cartilage trauma might have the potential to ameliorate early molecular processes usually associated with the pathogenesis of posttraumatic osteoarthritis.
The main limitation of autologous chondrocyte implantation techniques is the necessity for
Intervertebral disc degeneration is a common cause of low-back pain, the musculoskeletal disorder with the largest impact world-wide. The complex disease is however not yet well understood, and no treatment is available. This is somewhat in contrast with osteoarthritis, a subject of more extensive research. Intervertebral disc degeneration may though be a type of osteoarthritis, as other vertebrates have a diarthrodial joint instead of an intervertebral disc. We describe the parallel in view of the anatomy, composition and degeneration of the intervertebral disc and articular joint. Not only different embryonic origin and anatomy suggest significant differences between the intervertebral disc and the synovial joint, but their biomechanical properties also partly differ, as articulation is one of the key properties of a synovial joint and does not occur in the intervertebral disc. However, both tissues provide flexibility and are able to endure compressive loads, and both cell behavior and extracellular matrix appear much the same, mainly existing of chondrocytes, proteoglycans and collagen type II, suggesting that the environment of the cell is more important to its behavior than embryonic origin. Moreover, great similarities are found in the inflammatory cytokines, which are mainly IL-1β and TNF-α, and matrix-degrading factors (i.e. MMPs and ADAMTSs) involved in the cascade of degeneration, resulting in overlapping clinical and radiological features such as loss of joint space, subchondral sclerosis, and the formation of osteophytes, causing pain and morning stiffness. Therefore, we state that disc degeneration can result in the osteoarthritic intervertebral disc. This point of view may enhance the synergy between both fields of research, and potentially provide new regenerative strategies for intervertebral disc degeneration.
Chondrogenic differentiation and cartilage homeostasis requires a high cellular translational capacity to meet the demands for cartilaginous extracellular matrix production. Box C/D and H/ACA snoRNAs guide post-transcriptional 2′-O ribose methylation and pseudouridylation of specific ribosomal RNA (rRNA) nucleotides, respectively. How specific rRNA modifications influence rRNA function is poorly documented, but modifications are thought to tune rRNA folding and interaction with ribosomal proteins, which is critical for ribosome function. We hypothesise that chondrocyte translational capacity is supported by snoRNA-mediated post-transcriptional fine-tuning of rRNAs. ATDC5 progenitor cells were differentiated into the chondrogenic lineage, resembling mature and mineralising chondrocytes after 7 or 14 days, respectively. UBF-1 (rRNA transcription factor), fibrillarin (box C/D methyltransferase) and dyskerin (box H/ACA pseudouridylase) expression displayed highest fold induction at day 5/6 in differentiation. Ribosomal RNA content per cell was increased at day 7, but not at day 14 in differentiation. These data suggest that ribosome biogenesis adapts to the chondrocyte's differentiation status. RNA-Seq of RNA species <200 nt revealed expression of at least 224 individual snoRNAs. Due to initiation of chondrogenic differentiation (Δt0-t7), 21 snoRNAs were differentially expressed (DE; FDRadj-p<0.05, logFC>1or<−1). Mineralization (Δt7-t14) induced DE of 23 snoRNAs. Comparing t0 with t14 resulted in DE of 43 snoRNAs. To anticipate on the biological relevance of DE snoRNAs, their rRNA target nucleotides were plotted in 18S, 5.8S and 28S rRNA secondary structures. This revealed that DE snoRNAs, amongst others, target nucleotide modifications in the 28S peptidyl transferase center and the 18S decoding center (DC). Snora40 was DE, targeting helix 27/18S rRNA. Helix 27 controls DC function. Helix 68 of 28S rRNA is part of the ribosome's E-site, therefore, DE snord36c and snora31 (targeting helix 68) could potentially fine-tune the translation mechanism. As a final example we found snord46 to be DE (target: helix 69/28S rRNA). Mutations in helix 69 have been shown to severely affect cell viability. Our data show that increased demand for translational capacity during chondrogenic differentiation is associated with differential expression of snoRNAs, potentially controlling ribosome fidelity via site-specific rRNA-modifications. These data enable us to determine the role of individual snoRNAs in tuning the chondrocyte's translational properties and current efforts focus on confirming site-specific rRNA-modifications and determine their biological relevance.
Biomechanical overloading initiates intervertebral disc degeneration. We hypothesized that this is due to mechanosensitivity of the cells, which break down the extracellular matrix. Previously, we found that overloading in a loaded disc culture system causes upregulation of remodeling- and inflammatory gene expressions. Fourier Transform Infrared Spectroscopy is a novel technique to identify, visualize and quantify ECM. In this research, we first identified novel spectroscopic markers for disc degeneration, and then applied these markers to investigate the first steps into disc degeneration by overloading. In dataset 1, 18 discs of 9 goats were injected with chondroitinase ABC (degenerated) or not (control), and obducted 3 months after injection. This was used to find new spectroscopic markers for degeneration. In dataset 2, 42 goat discs were loaded with a physiological loading regime (50–150N) or overloading (50–400N) in a loaded disc culture system. In 18 of these discs, the cell activity was diminished in advance by freeze-thaw cycles and culturing on saline alone (non-vital group)). 24 additional discs were cultured in culture medium immediately post-mortem (vital group). Thereby, we are able to control whether the effect of the overloading is due to cell activity. The discs were fixed in formaldehyde, and 4 μm mid-sagittal were mounted to steel reflectance slides. Infrared spectroscopic mosaic images (23 × 57 images) were collected in transflectance mode at a spectral region of 1025–1150 cm−1. Data was pre-processed by second derivative transformation and MCR-MALS with two factors. The two factors were transferable between datasets, confirming the reliability. The first factor represents proteoglycans, as confirmed by Saffrin-O staining. In dataset 1, the degenerated group had less proteoglycan factor overall, especially in the nucleus (p<0.05). The second factor was found to have a lower entropy (p<0.01), showing a disorganization in the matrix. In dataset 2, no significant reduction in proteoglycan was found due to overloading in any group. However, the entropy was lower in the overloaded vital group (p<0.05), but not in the overloaded non-vital group (p>0.5). Therefore, we conclude that infrared spectroscopy is a promising tool to investigate early disc degeneration. Overloading can cause changes in the extracellular matrix, but only due to cell activity. Entropy is an early marker for early disc degeneration, implying that cutting of the extracellular matrix by cell activity is the first step into intervertebral disc degeneration.
Little is known on how sensory nerves and osteoclasts affect degenerative processes in subchondral bone in osteoarthritis (OA). Substance P (SP) effects on bone are ambivalent but physiological levels are critical for proper bone quality whereas α-calcitonin gene-related peptide (αCGRP) has anabolic effects. Here, we aimed to analyse the influence of an altered sensory neuropeptide microenvironment on subchondral bone in murine OA. Transection of the medial meniscotibial ligament (DMM) of the right hind leg induced joint instability leading to development of OA. Subchondral bone of tibiae from wildtype (WT), alendronate-treated WT (ALN, osteoclast inhibition), αCGRP- and SP- (Tachykinin (Tac)1) knockout mice was analysed by micro-computed tomography 4 and 12 weeks after DMM or sham surgery. Bone resorption marker CTX-I was measured in serum. We observed osteophytosis in all DMM groups and ALN sham mice 4 weeks after surgery but also in sham groups 12 weeks after surgery. In subchondral bone, bone volume density (BV/TV) increased from 4 to 12 weeks after surgery in DMM WT and Tac1-/− mice. DMM WT mice additionally had increased trabecular numbers (Tb.N.) and decreased trabecular space (Tb.Sp.) over time. Sham mice also showed time-dependent alterations in subchondral bone. In sham WT and αCGRP-/− mice specific bone surface (BS/BV) decreased and trabecular thickness (Tb.Th.) increased from 4 to 12 weeks after surgery while subchondral BV/TV of αCGRP-/− mice increased. Comparison of subchondral bone parameters at each time point showed elevated BV/TV in ALN DMM compared to WT DMM mice 4 weeks after surgery. In addition, both ALN sham and DMM mice showed a reduced BS/BV compared to WT. 4 weeks after sham surgery Tb.Th. was highest in ALN mice. In DMM WT mice Tb.Sp. was higher compared to ALN and αCGRP-/−. 12 weeks after surgery (late OA stage), BS/BV of ALN sham mice was significantly reduced in relation to ALN DMM, WT and Tac1-/− sham, while Tb.Th. increased compared to WT. DMM significantly decreased Tb.N. and increased Tb.Sp. in Tac1-/− compared to sham 12 weeks after surgery. CTX-I concentrations were significantly higher in ALN compared to Tac1-/− mice 4 weeks after sham surgery. 12 weeks after sham surgery CTX-I concentrations of WT mice were increased compared to αCGRP-/− and Tac1-/− mice. Over time, DMM induced stronger changes in subchondral bone of WT mice compared to knockout strains. WT and αCGRP-/− sham mice also show alterations in bone parameters over time indicating age-related effects on bone structure. SP deficiency enhanced DMM-induced structural bone alterations in late stage OA emphasizing the importance of SP under pathophysiological conditions. Osteoclast inhibition with alendronate proved to be preservative for time-dependent changes of subchondral bone observed in both, DMM and sham mice. Interestingly, ALN treatment did not reduce bone turnover marker CTX-I, and additionally promoted early osteophyte formation in sham mice.
Dynamic compressive loading of cartilage can support extracellular matrix (ECM) synthesis whereas abnormal loading such as disuse, static loading or altered joint biomechanics can disrupt the ECM, suppress the biosynthetic activity of chondrocytes and lead to osteoarthritis. Interactions with the pericellular matrix are believed to play a critical role in the response of chondrocytes to mechanical signals. Loading of intact cartilage explants can stimulate proteoglycan synthesis immediately while the response of chondrocytes in tissue engineering constructs dependent on the day of culture. In order to effectively utilize mechanical signals in the clinic as a non-drug-based intervention to improve cartilage regeneration after surgical treatment, it is essential to understand how ECM accumulation influences the loading response. This study explored how construct maturity affects regulation of ECM synthesis of chondrocytes exposed to dynamic loading and unraveled the molecular correlates of this response. Human chondrocytes were expanded to passage 2, seeded into collagen scaffolds and cultured for 3, 21, or 35 days before exposure to a single loading episode. Dynamic compression was applied at 25% strain, 1 Hz, in 9 × 10 minute-intervals over 3h. Gene expression and protein alterations were characterized by qPCR and Western blotting. Proteoglycan and collagen synthesis were determined by radiolabel-incorporation over 24 hours. Maturation of constructs during culture significantly elevated ECM deposition according to histology and GAG/DNA content and chondrocytes redifferentiated as evident from raising COL2A1 and ACAN expression. Loading of d3 constructs significantly reduced proteoglycan synthesis and ACAN expression compared to controls while the identical loading episode stimulated GAG production significantly (1.45-fold, p=0.016) in day 35 constructs. Only in mature constructs, pERK1/2 and its immediate response gene FOS were stimulated by loading. Also, SOX9 protein increased after loading only in d21 and d35 but not in d3 constructs. Interestingly, levels of phosphorylated Smad 1/5/9 protein declined during construct maturation, but no evidence was obtained for load-induced changes in pSmad 1/5/9 although BMP2 and BMP6 expression were stimulated by loading. Selected MAPK-, calcium-, Wnt- and Notch-responsive genes raised significantly independent of construct maturity albeit with a generally weaker amplitude in d3 constructs. In conclusion, construct maturity determined whether cells showed an anabolic or catabolic response to the same loading episode and this was apparently determined by a differential SOX9 and pERK signaling response on a background of high versus low total pSmad1/5/9 protein levels. Next step is to use signaling inhibitors to investigate a causal relationship between Smad levels and a beneficial loading response in order to design cartilage replacement tissue for an optimal mechanical response for in vivo applications.
Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation. The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated transfection (1,000 ng of plasmid/well in 12-well plates). FLAG-Empty vector was used as a negative control. FLAG-CART-1 overexpression was confirmed by means of anti-FLAG immunoblotting. To investigate a potential connection between CART-1 and established key chondrogenic pathways, TGFβ3 (10 ng/mL) was added to SW1353 cells in CART-1 overexpression cultures or their appropriate controls. Cells were harvested 48 hours after transfection and mRNA expression of several genes involved in chondrogenic differentiation was determined by qRT-PCR. Data represent three separate experiments performed in technical triplicate.Introduction
Methods
Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting.Introduction
Materials/Methods
Complement C5a receptor 1 (C5aR1) has crucial functions in host defense against danger molecules, as does toll-like receptor 2 (TLR2). Both innate immunity receptors interact in immune cells in the context of infectious inflammatory diseases often associated with bone loss, such as periodontitis. C5aR1 plays an important role in bone, as it is expressed on bone cells and strongly upregulated due to bone injury. Importantly, C5aR1-ko mice are protected against arthritis and C5aR1 contributes to bone loss in periodontitis. In contrast, less data exist on the role of TLR2 on osteoblasts, however, it is known that TLR2 is expressed on osteoblasts and contributes to bacterial-induced bone resorption. The aim of this study was to evaluate the interaction of C5aR1 and TLR2 in osteoblasts, including intracellular signaling pathways and gene expression patterns. Primary osteoblasts were isolated from 8–12 week-old WT mice and differentiated for 14 days. Osteoblasts were assessed for expression of C5aR1 and TLR2. Phosphorylation of mitogen-activated protein kinases (MAPK) in response to C5a and Pam3CSK4 (TLR2 agonist) was analyzed by immunoblotting. Gene expression profiling after 30 min and 4 h stimulation of C5a was performed by microarray and candidate genes were validated by quantitative Real-Time PCR (qRT-PCR). Immunoprecipitation was performed using a C5aR1-antibody and C5aR1 and TLR2 were subsequently detected by immunoblotting. Statistics: One way ANOVA p<0.05, n=4–6. We showed that C5aR1 and TLR2 are expressed on osteoblasts and strongly upregulated during differentiation. Via immunoprecipitation, we could show that C5aR1 and TLR2 do physically interact in osteoblasts. We then examined if C5aR1 and TLR2, besides their physical interaction, also act via the same intracellular signaling pathways. Gene expression profiling upon C5a stimulation revealed that the top regulated pathways are related to MAPK and transforming growth factor beta (TGF-β). Respective genes, such as TGF-β ( This study shows that C5aR1 and TLR2 interact in osteoblasts, not only physically but also functionally, regarding downstream signaling and target genes. Those data strongly imply a synergistic interplay between the receptors, through which osteoblasts possibly contribute to inflammatory reactions affecting bone.
Osteoarthritis is characterised by the loss and damage of cartilage in synovial joints. Whilst joint replacement is the gold standard for end stage disease, repair or regenerative strategies aim to slow disease progression, maintain joint function and defer the need for joint replacement. One approach seeks to target endogenous repair after drilling or microfracture (a type of trauma induced repair) in the area of cartilage loss – connecting the defect to the underlying bone marrow niche. The rationale of this approach is that cells delivered to the defect site, from the bone marrow, will bring about cartilage repair. Bone marrow contains multipotent cells, including stem and stromal populations, of both the haematopoietic and skeletal systems. Bone marrow mesenchymal stromal cells (BMSCs) are characterised by tri-lineage differentiation (bone, cartilage and adipose tissue) and contribute to the formation of the bone marrow niche, which maintains haematopoietic stem cell quiescence. This quiescence ensures life-long haematopoiesis and the supply of mature blood cells to the haematopoietic system. In this study we investigate the interactions between haematopoietic and BMSCs (in both human and mouse cultures) specifically to understand the consequences on BMSCs during tissue repair. A murine MSC cell-line model was co-cultured with enriched fractions of primary murine haematopoietic progenitor cells isolated based on c-Kit, Sca-1, and lineage markers. Similarly, human bone marrow derived MSCs were co-cultured with primary bone marrow haematopoietic fractions isolated based on CD34, CD38 and lineage markers. Using confocal microscopy, we demonstrated that the two cell populations directly interact through cell-cell contact with haematopoietic cells located above and below the MSC monolayer. Cultures were then pushed to differentiate down the osteogenic lineage. Results indicate that MSCs co-cultured with haematopoietic cells exhibited significant inhibition of osteogenesis when analysed by functional assay of matrix mineralisation and gene expression analysis for transcripts including Runx2, Osterix and type I collagen. These data support the hypothesis that hematopoietic progenitor cells influence both the local homeostasis of the bone marrow as well as the repair potential of stromal cells. Such interactions could be important for the resolution of injury after trauma induced repair. Furthermore, manipulation of these interactions, such as the administration of haematopoietic cell stimulating agents, could be used to improve treatment outcomes.
Cell-based tissue engineering strategies for tendon repair have limited clinical applicability due to delayed extracellular matrix (ECM) deposition and subsequent prolonged culture periods, which lead to tenogenic phenotypic drift. Deposition of ECM in vitro can be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the intra- and extra-cellular milieu of multicellular organisms, which has been described to accelerate ECM deposition in human tenocytes. A variety of cell sources have been studied for tendon repair including tenocytes, dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) and various biophysical, biochemical and biological tools have been used to mimic tendon microenvironment. Therefore, we propose to assess the combined effect of MMC and mechanical loading on different cell sources to determine their suitability for the in vitro fabrication of tendon-like tissue. The uniaxial strain induced differential cell orientation based on the differentiation state of the cells: tenocytes and DFs, both permanently differentiated cells exhibited alignment perpendicular to the direction of the load, similarly to what is seen in native tendon environment. Immunocytochemistry showed that, when MMC is used, the DFs and MSCs showed increased deposition of collagen type I, one of the main components in tendon ECM. It is also seen that the ECM deposited follows the alignment of the cell cytoskeleton. However, for tenocytes, deposition of collagen type I is only seen when MMC is used in combination with mechanical loading, indicating that mechanical loading led to increased synthesis of collagen I, suggesting maintenance of the tenogenic phenotype. Other collagen types relevant to native tendon composition were also analysed, including types III, V and VI, and their deposition was also shown to be modulated by the use of MMC and mechanical loading. This appears to recreate the events of tendon tissue formation during development, where these collagen types are involved in regulation of collagen I fibrillogenesis and fibril diameter. Preliminary data also indicates that, under mechanical loading and MMC, expression of tenogenic genes is upregulated whilst chondrogenic and osteogenic markers are downregulated. This indicates the suitability of the combination of MMC and mechanical stimulation for modulating tenogenic phenotype of various cell sources and fabricating tendon-like tissue.
Cell-based therapies become more and more prominent for the treatment of intervertebral disc (IVD) injuries. Different strategies are under current development and address the restoration of either annulus fibrosus (AF) or nucleus pulposus (NP). Application of such Advanced Therapy Medicinal Products (ATMPs) is strictly regulated. One requirement is to show the identity of the cells, to make sure the cells are indeed AF or NP cells and retained their IVD cell character during manufacturing process before injection to the site of injury. Therefore, we recently identified novel marker genes that discriminate AF and NP cells on tissue level. However, expression of these AF and NP tissue markers has not been investigated in cultured cells, yet. The aim of this study was to proof the tissue marker”s specificity to discriminate cultured AF and NP cells. Furthermore, we evaluated the tissue markers robustness to different cell culture conditions. AF and NP tissue was obtained from human lumbal IVD of five donors (31–45 years) with mild to moderate degenerative changes (Pfirrmann≤3). Cells were isolated by enzymatic digestion and expanded in culture medium containing 10% human serum and 1% antibiotics. To address specificity, AF and NP cells were cultured separately. To address robustness, 1) cells were cultured up to passage P2, 2) cell culture was performed using two different cell culture media and 3) cells were cryopreserved in an optional intermediate step. Gene expression analysis was performed for 11 novel AF and NP tissue marker: LDB2, ADGRL4, EMCN, ANKRD29, OLFML2A, SPTLC3, DEFB1, DSC3, FAM132B, ARAP2, CDKN2B (patent pending).Introduction
Materials & Methods
Fusion is a fundamental procedure in spine surgery. Although autogenous grafts have ideal bone graft characteristics, their use may remain limited due to various morbidities. Even though ceramic based synthetic bone grafts are used commonly at present, in order to enhance their efficacy, their combined use with other materials has been investigated. The use of carbon nanotubes (CNTs) together with synthetic bone grafts such as hydroxyapatite (HA) has contributed to positive developments in bone tissue engineering. The aim of the present study was to investigate the effect of CNTs/ HA- tricalcium phosphate (TCP) composite prepared in posterolateral spinal fusion model.Background context
Purpose
Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). In growth-guidance systems, free-sliding anchors preserve longitudinal spinal growth, thereby eliminating the need for surgical lengthening procedures. Non-segmental constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires have been proposed as an improvement to the traditional Luque trolley. In such a construct, UHMWPE sublaminar wires, secured by means of a knot, serve as sliding anchors at the proximal and distal ends of a construct, while pedicle screws at the apex prevent rod migration and enable curve derotation. Ideally, a construct with the optimal UHMWPE sublaminar wire density, offering the best balance between providing adequate spinal fixation and minimizing surgical exposure, is designed preoperatively for each individual patient. In a previous study, we developed a parametric finite element (FE) model that potentially enables preoperative patient-specific planning of this type of spinal surgery. The objective of this study is to investigate if this model can capture the decrease in range of motion (ROM) after spinal fixation as measured in an experimental study. In a previous INTRODUCTION
MATERIALS AND METHODS
Full-thickness cartilage defects are commonly found in symptomatic knee patients, and are associated with progressive cartilage degeneration. Although the risk of defect progression to degenerative osteoarthritis is multifactorial, articular cartilage defects change contact mechanics and the mechanical response of tissue adjacent to the defect. The objective of this study was to quantify changes in intra-tissue strain patterns occurring at the defect rim and opposing tissue in an experimental model mimicking Macroscopically intact osteochondral explants with smooth surfaces were harvested form the femoral condyles of 9 months old bovine knees. Two groups were tested; reference group with intact cartilage (n=8) and defect group with a full thickness cylindrical defect (diameter 8 mm) in one cartilage surface from each pair (n=8). The explants with defect articular surface and the opposing intact cartilage were compressed at ∼0.33 times body weight (350N) during cycles of 2s loading followed by 1.4s unloading. In plane tissue deformations were measured using displacement encoded imaging with stimulated echoes (DENSE) on a 9.4T MRI scanner. A two-sample t-test was used to assess statistical significance (p<0.05) of differences in maximal Green-Lagrange strains between the defect, opposing surface and intact reference cartilage.Objective
Methods
Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill. Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the orientation of acetabular cup implants and displayed this in the participant”s field of view. The system calculated the difference between planned and achieved orientation as a solid-angle error. Six different inclination and anteversion combinations, related to hypothetical patient-specific anatomy, were used as target orientations. Learning curves were measured over four sessions, each one week apart. Error in orientations of non-taught angles and during a concealed pelvic tilt were measured to assess translation of skills. A post-test questionnaire was used for qualitative analysis of procedure understanding and participant experience.Background
Methods
The medial patellofemoral ligament (MPFL) is the main stabilizer of the patella and therefore mostly reconstructed in the surgical correction of patellofemoral dislocation. Various biomechanical and clinical studies have been conducted on MPFL reconstruction, while the patellofemoral contact pressure (PFCP) which is indicated as one of the predictors of retropatellar osteoarthritis was neglected. Therefore, the aim of this study was to investigate how different MPFL reconstruction approaches affect PFCP. After radiographic examination and preparation six human cadaveric knee joints (52.1 ± 8.4yrs) were placed in a 6-DOF knee simulator. Three flexion-extension cycles (0–90°) were applied, while the extensor muscles (175N) and an axial joint load (200N) were simulated. PFCP was measured in knee flexion of 0°, 30° and 90° using a calibrated pressure measurement system (K-Scan, Tekscan Inc., USA). The following MPFL conditions were examined: native (Pnat), anatomical reconstruction (Pa), proximal and distal patellar single-bundle reconstruction (Pp, Pd), proximal and ventral femoral reconstruction (Fp, Fv). The cohesive gracillis graft of each knee was used for MPFL reconstruction. Further, the effect of three different graft pre-tensioning levels (2N, 10N, 20N) on the PFCP were compared. Nonparametric statistical analysis was performed using SPSS (IBM Inc., USA).Introduction
Material & Methods
With processing age, meniscus degeneration occurs which is often associated with osteoarthritis. Existing data about the influence of degeneration on the biomechanical properties of the meniscus are still contradictory, or completely unknown regarding the hydraulic permeability. Thus, the aim of this study was to characterise the biomechanical properties and structural composition of the meniscal tissue depending on its degree of degeneration. Menisci of 24 TKR-patients (≈67.1 yrs.) were harvested and the degeneration of each region (Introduction
Methods
The significance of physical activity (PA) assessment is widely acknowledged as it can aid in the understanding of pathologies. PA of knee osteoarthritis (KOA) patients has been assessed with varying methods, as it is a disease that is known to impair physical function and activity during daily life. Differences between methods have been described for general outcomes (sport participation or sedentary time), yet failed to describe common activities such as stair locomotion or sit-to-stand (STS) transfers. This study therefore aimed to determine the comparability of various methods to assess daily-life activities in KOA patients. Sixty-one clinically diagnosed KOA patients wore a tri-axial accelerometer (AX3, Axivity, UK) for one week during waking hours. Furthermore, they performed three physical function tests: a 40-m fast-paced walk test (WT), a timed up-and-go test (TUGT) and a 15 stair-climb test (SCT). Patients were also asked to fill out the Knee Osteoarthritis Outcome Score (KOOS), a KOA-specific questionnaire. Patients were slightly overweight (average BMI: 27.3±4.8 kg/m2), 60 (±10) years old and predominantly female (53%). The amount of daily level walking bouts was only weakly correlated with the WT performance, representing patients” walking capacity, (ρ=−0.33, p=0.01). Similarly, level-walking bouts during daily life correlated weakly with self-perceived walking capacity addressed by the KOOS (ρ=−0.36, p=0.01). For stair locomotion, a slightly different trend was seen. A moderate correlation was found (ρ=0.65, p<0.001), between the amount of ascending bouts and the objective functional test performance (SCT). However, the subjective assessment of stair ascending limitations (via the KOOS) correlated only weakly with both the functional test performance and the measured level of activity (ρ=−0.30 and −0.35, resp.). Comparable results were found for descending motions. STS transfers during daily life correlated moderately at best with the time to complete the TUGT (ρ=−0.43, p<0.01) and only weakly with the self-perceived effort of STS transfers (ρ=−0.26, p=0.04). Only weak correlations existed between subjective measures and objective parameters (for both functional tests and daily living activities), indicating that they assess different domains (e.g. self-perceived function vs. actual physical function). Furthermore, when comparing the two objective measures, correlation coefficients increased compared to the subjective methods, yet did not reach strong agreement. These findings suggest that addressing common activities of daily life either subjectively or objectively will result in different patient-related outcomes of a study. Assessment methods should therefore be chosen with caution and compared carefully with other studies.
Wear is an important factor in the long term success of total knee arthroplasty. Therefore, wear testing methods and machines become a standard in research and implant development. These methods are based on two simulation concepts which are defined in standards ISO 14243-1 and 14243-3. The difference in both concepts is the control mode. One is force controlled while the other has a displacement controlled concept. The aim of this study was to compare the mechanical stresses within the different ISO concepts. Furthermore the force controlled ISO was updated in the year 2009 and should be compared with the older which was developed in 2001. A finite element model based on the different ISO standards was developed. A validation calculated with kinematic profile data of the same implant (Aesculap, Columbus CR) in an experimental wear test setup (Endolap GmbH) was done. Based on this model all three different ISO standards were calculated and analysed. Validation results showed Pearson correlation for anterior posterior movement of 0.3 and for internal external rotation 0.9. Two main pressure maximums were present in ISO 14243-1:2001 (force controlled) with 17.9 MPa and 13.5 MPa for 13 % and 48 % of the gait cycle. In contrast ISO 14243-1:2009 (force controlled) showed three pressure maximums of 18.5 MPa (13 % of gait cycle), 16.4 MPa (48 % of gait cycle) and 13.2 MPa (75 % of gait cycle). The displacement controlled ISO (14243-3:2014) showed two pressure maximums of 16.0 MPa (13 % of gait cycle) and 17.2 MPa (48 % of gait cycle). The adapted force controlled ISO of the year 2009 showed higher mechanical stress during gait cycle which also might lead to higher wear rates. The displacement controlled ISO leads to higher mechanical stress because of the constraint at the end of the stance phase of the gait cycle. Future studies should analyse different inlay designs within these ISO standards.
Total knee replacement (TKR) is an effective operation for many patients, however approximately 20% of patients experience chronic pain and functional limitations in the months and years following their TKR. If modifiable pre-operative risk factors could be identified, this would allow patients to be targeted with individualised care to optimise these factors prior to surgery and potentially improve outcomes. Psychosocial factors have also been found to be important in predicting outcomes in the first 12 months after TKR, however their impact on long-term outcomes is unknown. This study aimed to identify pre-operative psychosocial predictors of patient-reported and clinician-assessed outcomes at one year and five years after primary TKR. 266 patients listed for a Triathlon TKR because of osteoarthritis were recruited from pre-operative assessment clinics at one orthopaedic centre. Knee pain and function were assessed pre-operatively and at one and five years post-operative using the WOMAC Pain score, WOMAC Function score and American Knee Society Score (AKSS) Knee score. Pre-operative depression, anxiety, catastrophizing, pain self-efficacy and social support were assessed using patient-reported outcome measures. Statistical analyses were conducted using multiple linear regression and mixed effect linear regression, and adjusted for confounding variables.Background
Patients and methods
Total knee arthroplasty is a well established treatment for degenerative joint disease with good clinical results. However, complications may occur due to a biological response to polyethylene wear particles, leading to osteolysis and aseptic loosening, as well as local and systemic hypersensitivity reactions triggered by metal ions and particles such as chromium, cobalt and molybdenum. Moreover, there is an increasing demand on the performance of these implants, as this treatment is also performed in heavier, younger and middle-aged adults who have a significant physical activity and higher life expectancy. The purpose of the following study was to compare the wear characteristics and performance of a zirconium nitride (ZrN) coated knee implant, designed for patients with metal ion hypersensitivity, against the clinically established cobalt-chromium (CoCr) version under a high demanding activities wear simulation. Medium size AS Columbus® DD (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN surface were tested in comparison with the cobalt-chromium version Columbus® DD. For both groups, ultra-high-molecular weight polyethylene (UHMWPE) gliding surfaces (size T3, high 10 mm) were used. Wear simulation was performed on a load controlled 4 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of daily activities measured in vivo (Bergmann et al, 2014) on 8 patients and normalized to a patient weight of 100 kg (Schwiesau et al, 2014). The load profiles were applied for 5 million cycles in a combination of 40% stairs up, 40% stairs down, 10% level walking, 8% chair raising and 2% deep squatting. Test serum was changed every 0.5 million cycles and all the components were cleaned and analyzed according to ISO 14243-2:2009(E). The gliding surfaces were evaluated for gravimetric wear and wear patterns, femur components analyzed for scratches and the test medium analyzed for metal ion concentration (cobalt, chromium, molybdenum and zirconium) using ICP-MS according to ISO 17294-2. The present study showed a wear rate reduction for the ZrN group (1.01 ± 0.29 mg/million) in comparison with the CoCr group (2.40 ± 1.18 mg/million cycles). The articulation surface of the ZrN coated femurs remained polished after the testing period, whereas the uncoated femurs showed wear scratches. Furthermore, the metal ion release from the ZrN coated implants was reduced orders of magnitude in comparison with the CoCr implants through the entire test. These results demonstrate the efficiency of ZrN coated knee implants to reduce wear as well as to prevent metal ion release in the knee joint.
Diffuse noxious inhibitory control (DNIC) is impaired in people with chronic pain such as knee osteoarthritis (KOA), which may predict the risk of acute-to-chronic pain transition. Electroacupuncture (EA) is effective in relieving pain in patients with KOA. However, whether EA may inhibit acute-to-chronic pain transition of KOA has not been systematically examined. This was a multicenter, three-arm parallel, single-blind randomized controlled trial involving a total of 450 patients with KOA. This study was approved by the Chinese Ethics Committee of Registering Clinical Trials (reference: ChiECRCT-20140035) and registered with Chinese Clinical Trial Registry (ChiCTR-ICR-14005411). Patients were divided into three groups based on EA current intensity: strong EA (>2mA), weak EA (<0.5mA) and sham EA (none acupoint). Treatments consisted of five sessions per week, for two weeks. Primary outcome measures were visual analog scale (VAS) and DNIC function.BACKGROUND
METHODS
Inpatient physiotherapy is routinely provided after total knee replacement (TKR) surgery to enhance recovery prior to discharge. However, the provision of outpatient physiotherapy is variable in the UK, and the longer-term benefits of outpatient physiotherapy are unclear. This study aimed to evaluate the feasibility of conducting a randomised controlled trial (RCT) to assess the effectiveness and cost-effectiveness of group-based outpatient physiotherapy after TKR. Patients listed for primary TKR were recruited prior to surgery. Patients who decided not to participate were asked about their reasons for non-participation. Patients were randomised to attend a newly developed post-operative physiotherapy class plus usual care or usual care alone. Patients allocated to the intervention group were invited to attend a weekly one-hour physiotherapy class, starting at 6 weeks after surgery and running over 6 consecutive weeks. The group classes were run by two physiotherapists within an outpatient gym, and involved task-orientated and individualised exercises. Classes ran on a rolling system, allowing new patients to join each week. Participants completed an evaluation questionnaire after the final class. Outcomes assessment was by questionnaire prior to surgery and 2 weeks, 3 months and 6 months after surgery. Outcomes related to function, pain, balance, self-efficacy, participation, quality of life and resource use.Background
Methods
Injuries of the meniscal attachments can lead to meniscal extrusion. We hypothesized that the extent of lateral meniscal extrusion (LME) was associated with the severity of the lateral meniscus posterior root tear (LMPRT). This study aimed to evaluate the relationship between preoperative LME and arthroscopic findings of LMPRT in knees with anterior cruciate ligament (ACL) injury. Thirty-four knees that had LMPRTs with concomitant ACL injuries on arthroscopy were evaluated. Patients were divided into two groups, partial and complete root tears, via arthroscopic findings at the time of ACL reconstruction. We retrospectively measured preoperative LMEs using magnetic resonance imaging (MRI). Statistical analysis was performed using the Mann-Whitney U-test and Chi-square test.Purpose
Methods
Management of the patellofemoral surface in total knee arthroplasty (TKA) remains a topic of debate. Incidence of anterior knee pain and incidence of repeat operation have been the focus of several recent meta-analyses, however there is little recent data regarding patients” subjective ability to kneel effectively after TKA. The purpose of this study was to compare patient reported outcomes, including reported ability to kneel, after total knee arthroplasty with and without patellar resurfacing. Retrospective chart review of 84 consecutive patients who underwent primary TKA with patella resurfacing (56 knees) or without patella resurfacing (28 knees) having a minimum of 2.5 year follow up was performed. Oxford knee scores (OKS), visual analog pain scores (VAS), and questionnaires regarding ability to kneel were evaluated from both groups. Inability to kneel was defined as patients reporting inability or extreme difficulty with kneeling. Shapiro-Wilk test was used to determine normality of data. Mann Whitney U test was used to compare the OKS and VAS between groups. Chi square test was used to compare kneeling ability between groups. Statistical analysis was performed with SPSS version 23 (IBM, Aramonk, NY).Introduction
Methods
Addressing posterior tibial plateau fractures is increasingly recognized as an important prognostic factor for functional outcome. The treatment of posterior tibial plateau fractures is rather demanding and the implants are still standard, off-the-shelf implants. This emphasizes the need for a more thorough morphological study of the posterior tibial plateau, in order to treat these posterior fractures more adequately. We aimed to demonstrate anatomical variations of the tibia in order to develop better implants. After approval of the ethical committee 22 historically available CT scans of intact left tibia”s were segmented using Mimics (Materialise, Belgium). In order to perform principal component analysis, corresponding meshes are necessary. Mesh correspondence was achieved by deforming one selected source tibia to every other target tibia, through non rigid registration. The non-rigid registration algorithm was based on the algorithm described by Amberg et al (ref). After performing the non-rigid registration, principal component analysis was performed in Matlab (Mathworks, USA).Purpose
Method
Each year more than 70 billion standard units of antibiotic are prescribed to treat bacterial infections worldwide. In addition, at least 63,000 tons of antibiotics are consumed by livestock for growth promotion and disease prevention. The result of this overuse of antibiotics is a spiraling increase in resistance. In the United States and Europe, antibiotic resistant bacteria are responsible for more than 4 million infections and approximately 50,000 deaths annually. In addition, bacteria such as methicillin-resistant This presentation will show how non-invasive preclinical imaging (optical, PET and CT) is being used to better understand the establishment and development of bacterial infections in vivo, and how best to treat them. In particular, data will be shown as to how preclinical imaging can be used to monitor bacterial infections on orthopaedic implants, and how this technology might be translated into the clinic.
Prosthetic joint infection (PJI) is an uncommon but serious complication of hip replacement. A recent systematic review of patient risk factors for PJI identified male gender, smoking status, increasing BMI, steroid use, previous joint surgery and comorbidities of diabetes, rheumatoid arthritis and depression as risk factors for developing PJI. Limitations of the current literature include the short term follow up of most published studies. We investigated the role of patient, surgical and healthcare factors on the risk of revision of a primary hip replacement for PJI at different time-points in the post-operative follow-up. It is important that those risk factors are identified so that patients can be appropriately counselled according to their individual risk profile prior to surgery and modifiable factors can be addressed to reduce the risk of PJI at an individual and healthcare system level. Primary hip replacements and subsequent revision procedures performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Patient (age, gender, ASA grade, BMI), perioperative (surgical indication, type of anaesthesia, thromboprophylaxis regime, surgical approach, hip replacement and bearing surface and use of femoral or acetabular bone graft) and healthcare system characteristics (surgeon grade, surgical volume) were linked with data from Hospital Episode Statistics to obtain information on specific ethnicity and comorbidities (derived from the Charlson index). Multilevel piecewise exponential non-proportional hazards models were used to estimate their effects at different post-operative periods (0–3 months, 3–6 months, 6–12 months, 12–24 and >24 months post-operation).Introduction
Materials and Methods
All animal experiments were performed on IACUC approved protocols. USA300LAC (MRSA) and RP62A(INTRODUCTION
METHODS
After the implantation of endoprotheses or osteosynthesis devices, implant-related infections are one of the major challenges. The surface of implants offers optimal conditions for the formation of a biofilm. Effective carrier systems for the delivery of adequate therapeutics would reduce the concentrations needed for successful treatment and improve cure rates. In cancer diagnosis and therapy, magnetic nanoparticles are concentrated in the target area by an external magnetic field. For orthopaedic applications, Fluorescein-isothiocyanate (FITC) was covalently attached to MNPSNPs. For the The solution in the remaining tube contained no detectable MNPs while the concentration in the vicinity of the platelet was 150 µg/ml. The mouse showed no clinical adverse effects. The CLSM examination revealed a considerable accumulation of the MNPs at the implant surface. MRI could show neither accumulated MNPs nor changes of organ structure. The loading capacity of the MNPs for enrofloxacin was approximately 95 µg/mg. A burst release of nearly a third of the loaded antibiotic occurred within the first 6 hours followed by a further steady release. Loading and release of enrofloxacin showed appropriate results. For future studies antibiotics like rifampicin or vancomycin will be implemented. This first in vivo trial demonstrated an implant-directed targeting of the MNPs and successfully transferred the principle into an in vivo model so that a main study with statistically significant animal numbers has started including histological examinations.Conclusion
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. During the past decades, novel materials have been developed to improve osseointegration of implants. Recently has been demonstrated that by using nanosized hydroxyapatite (HA) coatings, since it combines nanoroughness and bone-like chemistry in a synergistic effect, it promotes better osseointegration when compared to uncoated metal implants. In a further step, due to the known bactericidal properties of fluor, the aim of this study is to evaluate the biofilm development on fluorohydroxyapatite (FHA) compared to HA. Coatings were grown on stainless steel substrates by Pulsed Laser Deposition (PLD) technique using fluorohydroxyapatite targets of marine origin. A comprehensive physicochemical characterization of the coatings was performed using SEM, EDS, XPS and XRD. Biological The Statistical analysis was performed by non-parametric unilateral Wilcoxon”s test with a level of statistical significance of 0.05. The results showed a significant (p=0.02475) 2.4-fold reduction in In conclusion, according our results FHA is a promising biomaterial that promotes osseointegration and decreases the staphylococcal biofilm that could avoid PJI. Further studies will be necessary.
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus and coagulase-negative S. epidermidis are the most commonly infecting agents associated with PJI. Nowadays, Gram-negative species like Escherichia coli and Pseudomonas aeruginosa are gaining relevance. The use of TiO2 conical nanotubular doped with fluorine and phosphorous (FP-cNT) surfaces is an interesting approach to prevent surface bacterial colonization during surgery and favouring the osseointegration. Despite of there are serum markers related with PJI, to date there is described no biomaterial-related marker that allows detecting PJI. Here we describe the adherence and the bactericidal effect of FP-cNT and its capacity of marking the non-fermenting bacteria that have been in contact with it by Al. This metal is delivered by FP-cNT in non-toxic concentrations (between 25 and 29 ng/mL). F-P-cNT layers on Ti6Al4V alloy were produced as described previously by our group. Ti6Al4V chemical polishing (CP) samples without nanostructure were used as control and produced as described previously. S. aureus 15981, S. epidermidis ATCC 35984, E. coli ATCC 25922, and P. aeruginosa ATCC 27853 strains adherence study was performed using the protocol described by Kinnari et al. in 0.9% NaCl sterile saline with a 120 min incubation. After incubation, the samples were stained with LIVE/DEAD BacLight Bacterial Viability Kit. Proportion of live and dead bacteria was calculated and studied by using ImageJ software. The experiments were performed in triplicate. The aluminum concentration was estimated in the supernatant after incubation and in the 0.22 µm filtered supernatant by atomic absorption in graphite furnace. The statistical data were analyzed by nonparametric Kruskal-Walis test and by pairwise comparisons using the nonparametric unilateral Wilcoxon test with a level of statistical significance of p<0.05. The values are cited as medians. Our results show that the bacterial adherence of all tested species significantly decreased on FP-cNT compared to CP except P. aeruginosa ATCC 27853: 19.8% for S. aureus 15981, 45.3% for S. epidermidis ATCC 35984 and 8.1% for E. coli ATCC 25922. The bacterial viability decreased 2-fold for S. aureus 15981, and 5-fold for S. epidemidis ATCC 35984, but increased 95% for P. aeruginosa ATCC 27853 and there no was variation for E. coli ATCC 25922 on FP-cNT compared to CP. Only supernatant P. aeruginosa ATCC 27853 shows significant Al detection after 120 min incubation (p<0.05). In summary, F-P cNT is a promising biomaterial that besides favoring osseointegration and potential usefulness as drug carrier, present bactericidal, non-stick ability (at least for staphylococci and E. coli) and is able to mark P. aeruginosa with Al, which could be potentially monitored in serum and urine in patients with PJI.
In the past decades, titanium-based biomaterials have been broadly used in maxillofacial and periodontology surgery. The main aetiological agents related to complications in this procedures are Porphyromonas gingivalis, a Gram-negative anaerobic bacteria that is also responsible for the development of chronic gingivitis, and Streptococcus oralis, a Gram positive facultative anaerobic bacteria. In previous studies, we have demonstrated that the fluorine doping of titanium-based alloys reduces bacterial adherence. The aim of this study is to evaluate the bacterial adherence on fluorine-doped titanium (TiF) probes compared to chemical polishing titanium (Ti) probes. The P. gingivalis ATCC 33277 and S. oralis ATCC 9811 adherence study was performed by introducing each probe in a well of 6-well plate with 5 ml containing 106 colony forming units (CFU/ml) in sterile 0.9% NaCl and was incubated 37°C 5% CO2 for 90 minutes, in anaerobiosis in the case of P. gingivalis. After incubation, samples were stained with LIVE/DEAD BacLight Bacterial Viability Kit. Proportion of live and dead bacteria was calculated and studied by using ImageJ software. The experiments were performed in triplicate. The statistical data were analyzed by nonparametric Wilcoxon test with a level of statistical significance of 0.05. Our results showed a significant (p<0.0053) 14.41% decrease of the adherence of P. gingivalis on TiF and an increase of 30% of dead cells. For S. oralis we did not get significant results. In conclusion, TiF can be considered a promising approach to prevent and treat infections related to maxillofacial and periodontology surgery.
The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of Staphylococcus aureus induced chronic osteomyelitis. MALDI-TOF have been applied to microbiological diagnosis in patient with osteomyelitis. In most cases, Staphylococcus aureus was isolated. In vitro Ceftriaxone-Loaded PerOssal pellet were placed in middle agar plate containing a stock strain of Staphylococcus aureus. Plates were incubated at 37ºC for 24 hours. The zones of bacterial inhibition were recorded after 24, 48 and 72 hours of incubation. In vivo evaluation was performed by prospectively studying of 21 patients with a clinically and bacteriologically diagnosed Staphylococcus aureus induced osteomyelitis. Mean age was 38±4,2(26 to 53)). After radical surgical debridement and ultrasound cavitation, the bone cavity was full filled with Perosal pellets loaded with different antibiotics depending from the antibiotic sensitivity test. Endpoints were the absence of clinical manifestation of infection or disease recurrence, no need for further surgery.Background
Material and methods
To determine if systemic toxicity occurs after the use of antibiotic loaded calcium sulphate in the treatment (1) of bone and soft tissue infection. Although antibiotic loaded calcium sulphate is increasingly used for the local treatment of bone and soft tissue infection, there is little data to demonstrate that systemic levels generated by local release of antibiotics are safe. For this reason, we routinely assay systemic levels of antibiotics. Patients with osteomyelitis or soft tissue infection underwent surgical debridement and lavage of the infected tissue in routine fashion. Patients with osteomyelitis were graded with the Cierny-Mader classification. Bone cavities and soft tissue dead spaces were packed with antibiotic loaded calcium sulphate (10–40 cc) loaded with Vancomycin (1–4 g) and Gentamicin (240–960 mg). The wounds were closed over the antibiotic loaded calcium sulphate. Patients underwent serial assays of Vancomycin and Gentamicin levels on the day of surgery and the first two post-operative days. Renal function was also measured.Aim
Methods
One method of surgical site infection prevention is lowering intraoperative environmental contamination. We sought to evaluate our hospitals operating room (OR) contamination rates and compare it to the remainder of the hospital. We tested environmental contamination in preoperative, intraoperative and postoperative settings of a total joint arthroplasty patient. 190 air settle plates composed of trypsin soy agar (TSA) were placed in 19 settings within our hospital. Locations included the OR with light and heavy traffic, with and without masks, jackets, and shoe covers, sub-sterile rooms, OR hallways, sterile equipment processing center, preoperative areas, post-anesthesia care units, orthopaedic floors, emergency department, OR locker rooms and restrooms, a standard house in the local community, and controls. The plates were incubated in 36 degrees celsius for 48 hours and colony counts were recorded. Numbers were averaged over each individual area.Introduction
Materials & Methods
Carriers of Pre-operative PCR nasal screening was performed in 273 Orthopaedic patients awaiting joint replacement surgery. In all 100 patients were positive for Introduction
Methods
Osteoarthritis is a degenerative disease that results in changes in cartilage extracellular matrix. Human MSCs (Male donors; aged 18–60 years, n = 6) were isolated from bone marrow and expanded for one passage and split into hyperoxic and physioxic MSC cultures, the latter conditions were isolated and expanded using a hypoxia controlled incubator. MSCs with or without physioxic preconditioning were aliquoted into wells of a 96-well cell culture plate in the presence of 10ng/ml TGF-β1 or in combination with either 0.1 or 0.5ng/ml IL-1ß and centrifuged to form pellets. Pellets were then differentiated under their isolation conditions. Pellets removed from culture on days 7, 14 and 21, were evaluated for wet weight, histological (DMMB staining, collagen type I, II, MMP-13 and TGF-β receptor II) and collagen type II ELISA analysis. Preconditioned MSCs demonstrated an enhanced collagen type II and GAG production undergoing chondrogenesis compared to hyperoxic pellets. In the presence of IL-1β, preconditioned MSCs reduced the inhibitory effect of IL-1ß compared to the equivalent conditions under hyperoxic, whereby there was a significant increase in wet weight, GAG and collagen type II production (p < 0.05). Furthermore, preconditioning MSCs had reduced collagen type X expression compared to hyperoxic cultures.Methods
Results
Early cell loss of up to 50% is common to in vitro chondrogenesis of mesenchymal stromal cells (MSC) and stimulation of cell proliferation could compensate for this unwanted effect and improve efficacy and tissue yield for cartilage tissue engineering. We recently demonstrated that proliferation is an essential requirement for successful chondrogenesis of MSC, however, how it is regulated is still completely unknown. We therefore aimed to identify signaling pathways involved in the regulation of proliferation during in vitro chondrogenesis and investigated, whether activation of relevant pathways could stimulate proliferation. Human MSC were subjected to in vitro chondrogenesis for up to 42 days under standard conditions in the presence of 10 ng/ml TGF-β. Cells were or were not additionally treated with inhibitors of bone morphogenetic protein (BMP), insulin-like growth factor (IGF) IGF/PI3K, fibroblast growth factor (FGF) or indian hedgehog (IHH) pathways for two or four weeks. To investigate the stimulation of proliferation by exogenous factors, cells were treated with BMP-4, IGF-1, FGF-18 or purmorphamine (small molecule hedgehog agonist). Proliferation was determined by [3H]-thymidine incorporation.Objective
Design
Human bone marrow-derived mesenchymal stem cells (hBMSCs) can adopt either an immune suppressive or stimulative phenotype in response to cytokines and pathogen-associated molecular patterns (PAMPs). It is known that the glycoprotein CD24 allows for the discrimination between PAMPs and DAMPs in dendritic cells. We were able to show previously that CD24 is expressed by hBMSCs and found that its overexpression leads to the downregulation of NF-kB-regulated genes, as well as induction of the anti-inflammatory TGF beta. In the present study the influence of various PAMPs and cytokines on the expression of CD24 in hBMSCs was analysed. Furthermore, it was tested whether hBMSCs were enriched by density gradient centrifugation, cultured Introduction
Methods
Human Mesenchymal stem cells (hMSCs) are a promising source for articular cartilage repair. Unfortunately, under Pellets of passage 2 hMSCs were formed in V-bottom well plates by centrifugation and pre-differentiated in a chemically defined medium containing 10ng/mL TGFß (CM+) for 14 days. Thereafter, pellets were cultured for an additional 14 days under 6 conditions: CM+, CM- (w/out TGFß), and hypertrophic medium (CM- with 25 ng/ml BMP 4, w/out dexamethasone). Each of these first three conditions was additionally supplemented with the RA receptor (RAR) inverse agonist BMS493 (BMS) at 2μM after 14 days of chondrogenic pre-differentiation. One additional BMP4 group was supplemented with BMS from the beginning of chondrogenic differentiation until day 14. The pellets were assessed for gene expression (Col 2, Col 10, Col 1 and MMP13) and histologically using dimethyl methylene blue (DMMB), alkaline phosphatase staining (ALP) and collagen II and X immunohistochemistry.Introduction
Methods
Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far regulation of these key fate determining TFs has not been studied thoroughly on mRNA and protein level through chondrogenesis of human MSC. To fill this gap in knowledge, we aim to uncover regulation of SOX9, RUNX2/3, MEF2C and other TFs related to hypertrophy during MSC chondrogenesis in vitro and in comparison to the gold standard AC redifferentiation. Expression of SOX9, RUNX2/3 and MEF2C was compared before and during 6-week chondrogenic re-/differentiation of human MSC and AC on mRNA level via qRT-PCR and protein level via Western-Blotting. Chondrogenesis was evaluated by histology at d42 and expression of chondrogenic markers like COL2. Hypertrophic development was characterized by ALP activity and expression of hypertrophic markers like COL10.Introduction
Methods
Tendon detachment from its bony insertion is one of the most frequent injuries occurring in the musculoskeletal interface, constituting an unmet challenge in orthopaedics. Tendon-to-bone integration occurs at the enthesis, which is characterized by a complex structure organized in a gradient of cells and microenvironments. Hence, the maintenance of a heterotypic cellular niche is critical for tissue functionality and homeostasis. Replicating this unique complexity constitutes a challenge when addressing tendon-to-bone regeneration and interfacial tissue engineering strategies. Currently, mechanisms presiding to tendon-to-bone interface healing are not yet fully understood, particularly the interactions between tendon and bone cells in the orchestration of interfacial repair versus regeneration. Therefore, this study focused on the hypothesis that interactions between human tendon-derived cells (hTDCs) and pre-osteoblasts (pre-OB) can initiate a cascade of events, potentially leading to interfacial regeneration. Thus, hTDCs and pre-OB (pre-differentiated human adipose-derived stem cells) were used. Herein, five different ratios between basal and osteogenic media (100:0,75:25,50:50,25:75,0:100) were assessed to estimate their influence on cell behaviour and identify the ideal parameters for simultaneously supporting tenogenic and osteogenic differentiation before establishing a co-culture. Tenogenic and osteogenic differentiation were assessed through the expression of tendon and bone markers, mineralization (alizarin red, AZ) and alkaline phosphatase (ALP) quantification. Results showed that hTDCs exhibited osteogenic differentiation potential when cultured in the presence of osteogenic media, as demonstrated by an increase in ALP activity and mineralization. Pre-OB expressed osteogenic markers (OCN, OPN) in all media conditions confirming osteogenic commitment, which was simultaneously confirmed by ALP levels and AZ staining. Thus, three different conditions (100:0, 50:50, 0:100) were chosen for further studies in a direct contact co-culture system. Similarly to single cultures, a significant proliferation was observed in all conditions and mineralization was increased as soon as 7 days of culture. Additionally, osteogenic, tenogenic and interface-relevant markers will be assessed to study the effect of co-culture on phenotype maintenance. In summary, the present work addresses major limitations to clinical translation of cell-based therapies aiming at promoting interfacial regeneration. Particularly, we explored the influence of culture media on the maintenance of tenogenic and osteogenic niches, taking a basic and critical step towards the establishment of more complex cell-based systems. Acknowledgements Authors thank Fundação para a Ciência e Tecnologia in the framework of FCT-POPH-FSE, SFRH/BD/96593/2013 (RCA) and IF/00593/2015 (MEG); and to FCT/MCTES and the FSE/POCH, PD/59/2013 for PD/BD/128088/2016 (IC).
In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. Tissue engineering may be an alternative for cranial bone repair. Titanium (Ti) and its alloys are widely used in many clinical devices because of perfect biocompatibility, highly corrosion resistance and ideal physical properties. An important progress in treating bone defects has been the introduction of bone morphogenetic proteins (BMPs), specifically BMP-2. The proteins induce osteogenic cell differentiation in vitro, as well as bone defect healing in vivo. In this study, we fabricated the titanium plate with dioxide creating by microarc oxidation (MAO) and then electronic deposition of Ca.P that can carrier recombinant human bone morphogenetic protein-2 (rhBMP-2) to enhance osteogenesis in vitro and bone formation in vivo. The rhBMP-2 was controlled released from MAO-Ca.P-rhBMP2 implant was maintain within 35days longer than Ti without MAO modification group and without CaP electronic deposition group. In addition, the in vitro results revealed that the bioactivity of rhBMP-2 released from MAO-Ca.P-rhBMP2 implant with an ideal therapeutic dose was well maintained. In vivo, the critical-sized defect (20-mm diameter) of New Zealand White rabbits was used to experiment. We concluded that sustained controlled-release of rhBMP-2 above a therapeutic dose could induce osseointegration between the implant and surrounding bone the rate of bone formation into the implant and produce neovascularization. Our study combined the concept of osteoconductive and osteoinductive to do the bone tissue regeneration.
While total shoulder arthroplasty (TSA) is a generally successful procedure, glenoid loosening remains a common complication. Though the occurrence of loosening was related to patient-specific factors, biomechanical factors related to implant features may also affect the fixation of the glenoid component, in particular increased glenohumeral mismatch that could result in eccentric loads and translations. In this study, a novel test setup was used to quantify glenohumeral pressures for different motion patterns after TSA. Six cadaveric human shoulders were implanted with total shoulder replacements (Exactech, Inc., USA) and subjected to cyclic internal-external, flexion-extension and abduction-adduction rotations in a passive motion testing apparatus. The system was coupled to a pressure sensor system (Tekscan, Inc., USA) to acquire joint loads and to a Zebris system (Zebris Medical, GmbH, Germany) to measure joint kinematics. The specimens were subjected to a total of 2160 cycles and peak pressures were compared for each motion pattern.Background
Methods
Last decade, a shift towards operative treatment of midshaft clavicle fractures has been observed [T. Huttunen et al., Injury, 2013]. Current fracture fixation plates are however suboptimal, leading to reoperation rates up to 53% [J. G. Wijdicks et al., Arch. Orthop. Trauma Surg, 2012]. Plate irritation, potentially caused by a bad geometric fit and plate prominence, has been found to be the most important factor for reoperation [B. D. Ashman et a.l, Injury, 2014]. Therefore, thin plate implants that do not interfere with muscle attachment sites (MAS) would be beneficial in reducing plate irritation. However, little is known about the clavicle MAS variation. The goal of this study was therefore to assess their variability by morphing the MAS to an average clavicle. 14 Cadaveric clavicles were dissected by a medical doctor (MH), laser scanned (Nikon, LC60dx) and a photogrammetry was created with Agisoft photoscan (Agisoft, Russia). Subsequently a CT-scan of these bones was acquired and segmented in Mimics (Materialise, Belgium). The segmented bone was aligned with the laser scan and MAS were indicated in 3-matic (Materialise, Belgium). Next, a statistical shape model (SSM) of the 14 segmented clavicles was created. The average clavicle from the SSM was then registered to all original clavicle meshes. This registration assures correspondences between source and target mesh. Hence, MAS of individual muscles of all 14 bones were indicated on the average clavicle. Mean area is 602 mm2 ± 137 mm2 for the deltoid muscle, 1022 mm2 ±207 mm2 for the trapezius muscle, and 683 mm2 ± 132 mm2 for the pectoralis major muscle. The sternocleidomastoid muscle has a mean area of 513 mm2 ± 190 mm2 and the subclavius muscle had the smallest mean area of 451 mm2 ± 162 mm2. Visualization of all MAS on the average clavicle resulted in 72% coverage of the surface, visualizing only each muscle's largest MAS led to 52% coverage. The large differences in MAS surface areas, as shown by the standard deviation, already indicate their variability. Difference between coverage by all MAS and only the largest, shows that MAS location varies strongly as well. Therefore, design of generic plates that do not interfere with individual MAS is challenging. Hence, patient-specific clavicle fracture fixation plates should be considered to minimally interfere with MAS.
Glenoid loosening, still a main complication for shoulder arthroplasty, was suggested to be related implant design, surgical aspects, and also bone quality. However, typical studies of fixation do not account for heterogeneity in bone morphology and density which were suggested to affect fixation failure. In this study, a combination of cyclic rocking horse tests on cadaver specimens and microCT-based finite element (microFE) analysis of specimens of a wide range of bone density were used to evaluate the effects of periprosthetic bone quality on the risks of loosening of anatomical keeled or pegged glenoid implants. Six pairs of cadaveric scapulae, scanned with a quantitative computer tomography (QCT) scanner to calculate bone mineral density (BMD), were implanted with either cemented anatomical pegged or keeled glenoid components and tested under constant glenohumeral load while a humeral head component was moved cyclically in the inferior and superior directions. Edge displacements were measured after 1000, 4000 and 23000 test cycles, and tested for statistical differences with regards to changes or implant design. Relationships were established between edge displacements and QCT-based BMD below the implant. Four other specimens were scanned with high-resolution peripheral QCT (82µm) and implanted with the same 2 implants to generate virtual models. These were loaded with constant glenohumeral force, varying glenohumeral conformity and superior or inferior load shifts while internal stresses at the cement-bone and implant-cement interfaces were calculated and related to apparent bone density in the periprosthetic zone.Introduction
Methods
Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal)Introduction
Materials and Methods
The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique ( Six pairs of cadaveric humeri were obtained through an ethically-approved donation program. The humeri were osteotomized to simulate a reproducible four-fragment fracture with the aid of a dedicated jig. Preparation included the simulation of a bone defect in the humeral head. One humerus of each pair was randomly assigned to one of two reconstruction techniques: (i) Introduction
Materials and Methods
Polypharmacy of elderly trauma patients entails further difficulties in addition to the fracture treatment. Impaired renal function, altered metabolism and drugs that are potentially delirious or inhibit ossification, are only a few examples which must be carefully considered for the medication in elderly patients. The aim of this study was to investigate, if medication errors could be prevented by orthogeriatric comanagement compared to conventional trauma treatment. In a superregional traumacenter based on two locations in Munich, all patients ≥ 70 years with proximal femur fracture were consecutively recorded in a period of 3 months. After the end of the treatment the medical records of each patient were analyzed. At the hospital location 1 the treatment was carried out without orthogeriatric comanagement, at the hospital location 2 with this concept (DGU-certified orthogeriatric center). In addition to the basic medication all newly added drugs were recorded as well as changes in the medication plan and also wether treatment was carried out by the geriatrician or the trauma surgeon. Based on the START / STOPP criteria for the medication of geriatric patients, we defined “no-go” drugs with the geriatrician of the orthogeriatric center which should be avoided in the orthogeriatric patient (including benzodiazepines, gyrase inhibitors, NSAID like Ibuprofen with impaired GFR). The statistical analysis was done with the chi-square-test (IBM SPSS Statistics 24).Background
Material and methods
A calcaneal medial osteotomy (CMO) is a surgical procedure frequently performed to correct a valgus alignment of the hindfoot. However currently little is known on its accurate influence on hindfoot alignment (HA). To assess the influence of a CMO on HA in both 2D and 3D measurements using weightbearing CT (WBCT).Background
Aim
Hip fractures affect 1.6 million people globally per annum, associated with significant morbidity and mortality. A large proportion are extracapsular neck of femur fractures, treated with the dynamic hip screw (DHS). Mechanical failure due to cut-out is seen in up to 7% of DHS implants. The most important predictor of cut-out is the tip-apex distance (TAD), a numerical value of the lag screw”s position in the femoral head. This distance is determined by the psychomotor skills of the surgeon guided by fluoroscopic imaging in theatre. With the current state of surgical training, it is harder for junior trainees to gain exposure to these operations, resulting in reduced practice. Additionally, methods of simulation using workshop bones do not utilise the imaging component due to the associated radiation risks. We present a digital fluoroscopy software, FluoroSim, a realistic, affordable, and accessible fluoroscopic simulation tool that can be used with workshop bones to simulate the first step of the DHS procedure. Additionally, we present the first round of accuracy tests with this software. The software was developed at the Royal National Orthopaedic Hospital, London, England. Two orthogonally placed cameras were used to track two coloured markers attached to a DHS guide-wire. Affine transformation matrices were used in both the anterior-posterior (AP) and cross table lateral (CTL) planes to match three points from the camera image of the workshop bone to three points on a pre-loaded hip radiograph. The two centre points of each marker were identified with image processing algorithms and utilised to digitally produce a line representing the guide-wire on the two radiographs. To test the accuracy of the system, the software generated 3D guide-wire apex distance (GAD) (from the tip of the guide-wire to a marker at the centre of calibration) was compared to the same distance measured with a digital calliper (MGAD). In addition, the same accuracy value was determined in a simulation scenario, from 406 attempts by 67 medical students.Background
Methods
Hip fractures cause significant morbidity and mortality, affecting 70,000 people in the UK each year. The dynamic hip screw (DHS) is used for the osteosynthesis of extracapsular neck of femur fractures, a procedure that requires complex psychomotor skills to achieve optimal lag screw positioning. The tip-apex distance (TAD) is a measure of the position of the lag screw from the apex of the femoral head, and is the most comprehensive predictor of cut-out (failure of the DHS construct). To develop these skills, trainees need exposure to the procedure, however with the European Working Time Directive, this is becoming harder to achieve. Simulation can be used as an adjunct to theatre learning, however it is limited. FluoroSim is a digital fluoroscopy simulator that can be used in conjunction with workshop bones to simulate the first step of the DHS procedure (guide-wire insertion) using image guidance. This study assessed the construct validity of FluoroSim. The null hypothesis stated that there would be no difference in the objective metrics recorded from FluoroSim between users with different exposure to the DHS procedure. This multicentre study recruited twenty-six orthopaedic doctors. They were categorised into three groups based on the number of DHS procedures they had completed as the primary surgeon (novice <10, intermediate 10≤x<40 and experienced ≥40). Twenty-six participants completed a single DHS guide-wire attempt into a workshop bone using FluoroSim. The TAD, procedural time, number of radiographs, number of guide-wire retires and cut-out rate (COR) were recorded for each attempt.Background
Methods
Training within surgery is changing from the traditional Halstedian apprenticeship model. There is need for objective assessment of trainees, especially their technical skills, to ensure they are safe to practice and to highlight areas for development. In addition, due to working time restrictions in both the UK and the US, theatre time is being limited for trainees, reducing their opportunities to learn such technical skills. Simulation is one adjunct to training that can be utilised to both assess trainees objectively, and provide a platform for trainees to develop their skills in a safe and controlled environment. The insertion of a dynamic hip screw (DHS) relies on complex psychomotor skills to obtain an optimal implant position. The tip-apex distance (TAD) is a measurement of this positioning, used to predict failure of the implant. These skills can be obtained away from theatre using workshop bone simulation, however this method does not utilise fluoroscopy due to the associated radiation risks. FluoroSim is a novel digital fluoroscopy simulator that can recreate digital radiographs with workshop bone simulation for the insertion of a DHS guide-wire. In this study, we present the training effect demonstrated on FluoroSim. The null hypothesis states that no difference will be present between users with different amounts of exposure to FluoroSim. Medical students were recruited from three London universities and randomised into a training (n=23) and a control (n=22) cohort. All participants watched a video explanation of the simulator and task and were blinded to their allocation. Training participants completed 10 attempts in total, 5 attempts in week one, followed by a one week wash out period, followed by 5 attempts in week 2. The control group completed a single attempt each week. For each attempt, 5 metrics were recorded; TAD, procedural time, number of radiographs, number of guide-wire retires and cut-out rate (COR).Background
Methods
Lateral epicondylitis, also known as “tennis elbow,” is a degenerative disorder of the common extensor origin of the lateral humeral epicondyle. The mainstay of treatment is non-operative and includes physiotherapy, activity modification, bracing, nonsteroidal anti-inflammatory drugs, and injections. There is a subgroup of patients however who do not respond to non-operative measures and require operative intervention. We conducted a retrospective review of prospectively collected data to assess whether the introduction of PRP injections for lateral epicondylitis led to a reduction in patients subsequently undergoing surgical release.Introduction
Methods
Glenoid inclination, defined as the angle formed by the intersection of a line made of the most superior and inferior points of the glenoid and a line formed by the supraspinatus fossa, has been postulated to impact the mechanical advantage of the rotator cuff in shoulder abduction. An increase in glenoid inclination has previously been reported in patients with massive rotator cuff tears and multiple studies have correlated rotator cuff tears to an increase of the critical shoulder angle, an angle comprised of both the glenoid inclination and acromical index. Glenoid inclination is best measured by the B-angle as it has been shown to be both an accurate and reliable. The purpose of this study was to determine the correlation of glenoid inclination and the presence of degenerative rotator cuff tears. Data was prospectively collected for study patients assigned to one of two groups. The tear group consisted of patients with degenerative, atraumatic rotator cuff tears, confirmed by MRI and the control group consisted of healthy volunteers without shoulder pain. Inclusion criteria for both groups included age 45 or older. Exclusion criteria included history of previous shoulder surgery, previous patient-recalled injury to the shoulder, presence of glenoid weak, and previous humerus or glenoid fracture. Patients were also excluded from the control group if any shoulder pain or history of rotator cuff disease was present. All patients had standard anterior/posterior shoulder radiographs taken and glenoid inclination was digitally measured with Viztek OpalRad PACS software (Konica Minolta, Tokyo, Japan). The beta angle was measured to determine the glenoid inclincation. Statistical analysis was performed using SPSS version 23 (IBM, Aramonk, NY). Patient age and glenoid inclination were examined with the Shapiro-Wilk test of normality and then compared with student t tests. Gender distribution was compared with chi square test. A p-value of 0.05 was used to represent significance.Introduction
Methods
Suture anchor have been used in surgical procedure of tendon or ligament repair. Recently, there has been developed an all suture anchor (soft anchor) which can be used even when the insertion area is narrow. But, the stability of soft anchors due to narrow zone has not been elucidated. This purpose of this study was to investigate stability of soft anchors with respect to their fixation intervals. Polyurethane foams with two different bone densities (10 pcf; 0.16g / cm³, 20 pcf; 0.32g / cm) were used. All suture anchors and conventional suture anchors were fixed at 10mm, 5mm, and 2.5mm intervals. The failure load was measured using a mechanical testing machine.Introduction
Methods
Following primary total knee arthroplasty (TKA), patients experience pain relief and report improved physical function and activity. However, there is paucity of evidence that patients are truly more active in daily life after TKA. The aims of this study were: 1) to prospectively measure physical activity with a wearable motion sensor before and after TKA; 2) to compare patient-reported levels of physical activity with objectively assessed levels of physical activity before and after TKA; 3) to investigate whether differences in physical activity after TKA are related to levels of physical function. 22 patients (age=66.6 ±9.3yrs; m/f= 12/11; BMI= 30.6 ±6.1) undergoing primary TKA (Vanguard, ZimmerBiomet), were measured preoperatively and 1–3 years postoperatively. Patient-reported outcome measures (PROMs) included KOOS-PS and SQUASH for assessment of perceived physical function and activity resp. Physical activity was assessed during 4 consecutive days in patients” home environments while wearing an accelerometer-based activity monitor (AM) at the thigh. All data were analysed using semi-automated algorithms in Matlab. AM-derived parameters included walking time (s), sitting time (s) standing time (s), sit-to-stand transfers, step count, walking bouts and walking cadence (steps/min). Objective physical function was assessed by motion analysis of gait, sit-to-stand (STS) transfers and block step-up (BS) transfers using a single inertial measurement unit (IMU) worn at the pelvis. IMU-based motion analysis was only performed postoperatively. Statistical comparisons were performed with SPSS and a per-protocol analysis was applied to present the results at follow-up.Introduction
Methods
Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and might hamper joint function, the effect of articular cartilage defects on knee contact forces and pressures is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with a tibiofemoral cartilage defect and healthy controls. This might provide additional insights in movement adaptations and the role of altered loading in the progression from defect to OA. Experimental gait data was collected in 15 patients with isolated articular cartilage defects (8 medial-affected, 7 lateral-affected) and 19 healthy asymptomatic controls and was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between medial-affected, lateral-affected and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). The lateral-affected group walked significantly slower compared to the healthy controls. No adaptations in the movement pattern that resulted in decreased loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. The current results suggest that isolated cartilage defects do not induce changes in the knee joint loading pattern. Consequently, the involved condyle will be equally loaded, indicating that a similar amount of force should be distributed over the remaining cartilage surrounding the articular cartilage defect and may cause local degenerative changes in the cartilage. This in combination with inflammatory responses might play a key role in the progression from articular cartilage defect to a more severe OA phenotype.
This study was to investigate the effect of posterior tibial slope (PTS) on the kinematics in the cruciate-retaining total knee arthroplasty (CR-TKA) using 2- to 3- dimensional registration technique. A total of 75 knees in 58 patients were recruited and categorized into the following two groups according to PTS. Group A was categorized PTS under 7degrees (n = 33) and group B was categorized PTS over 7 degrees (n = 42). The average age of group A and group B at the time of fluoroscopic surveillance date was 73.5 ± 7.4 years and 74.3 ± 4.5 years, respectively and the average follow-up period from operation date to fluoroscopic surveillance date was 13.8 ± 9.3 months and 16.7 ± 8.6 months, respectively. In vivo kinematics during sequential deep knee bending under weight-bearing condition were evaluated using fluoroscopic image analysis and 2- to 3- dimensional registration technique. Range of motion (ROM), axial rotation, anteroposterior (AP) translations of medial and lateral nearest points of the femoral component relative to the tibial component were measured and compared between the two groups. The nearest points were determined by calculating the closest distance between the surfaces of femoral component model and the axial plane of coordinate system of the tibial component. We defined external rotation and anterior translation as positive. P values under 0.05 was defined as statistically significant.Purpose
Material & Methods
Adequate osseointegration of knee resurfacing implants for the treatment of focal cartilage defects is an important prerequisite for good clinical outcomes. Inadequate initial fixation and sustained micromotion may lead to osteolysis and ultimately implant failure. PET/CT with the bone seeking tracer 18F-sodium fluoride (18F-NaF) allows for localisation and quantification of abnormalities in bone metabolism. 18F-NaF PET/CT has been shown to correlate with loosening of implants in the hip and spine. Here, we asses osseointegration of the knee resurfacing implants using micro-computed tomography (µCT) and correlate µCT parameters to 18F-NaF uptake on PET/CT scans taken 3 and 12 weeks after surgery. We hypothesize that 18F-NaF uptake at 12 weeks and its relative decrease between 3 and 12 weeks correlates with osseointegration at 12 weeks postoperatively. Polymer implants with Young”s moduli approximately equal to- and below the Young's modulus of bone, with- and without surface modification were used in this study next to a control metal implant. Five different osteochondral implants were implanted bilaterally in critically-sized osteochondral defects in 16 goats. At 3 and 12 weeks postoperatively, a 10-minute static PET/CT-scan (Philips, Gemini TF PET/CT) was made 60 minutes after intravenous injection of 18F-NaF. Image processing resulted in an overall bone metabolism parameter, i.e. standardized uptake value (SUV). A cylindrical region of interest was drawn around each implant to obtain the maximum SUV (SUVmax). Bone quality parameters were quantified in a cylinder surrounding the implant using µCT after sacrifice as a measure for osseointegration. The in vivo 18F-NaF PET/CT uptake parameters were correlated to the bone quality parameters.INTRODUCTION
METHODS
Acute pain following total knee replacements (TKRs) is associated with higher peri-operative opiate requirements and their side effects, longer hospital stay and lower patient satisfaction (Petersen 2014). It may also be associated with higher rates of chronic pain at 1 and 5 years (Beswick 2012). We present a novel technique using combination of Local Infiltration Anaesthesia (LIA) with PainKwell infusion system (Bupivacaine 0.5 @ 4mls and 6mls/hr) to improve pain management following TKRs. Between October 2015 and March 2016. 110 patients undergoing primary TKR were prospectively studied. All patients studied had spinal anaesthesia (SA) with diamorphine. Demographics between the two groups were similar. Group 1. SA plus LIA plus traditional multimodal analgesia. 32 patients. Group 2. SA plus LIA plus PainKwell for 48 hours rate 4mls. 38 patients Group 3. SA plus LIA plus PainKwell for 48 hours rate 6mls. 40 patientsBackground
Methods
Osteoarthritis (OA) is a growing societal burden, due to the ageing population. Less invasive, less damaging, and cheaper methods for diagnosis are needed, and sound technology is an emerging tool in this field. The aim of the current research was to: 1) investigate the potential of visual scalogram analysis of Acoustic Emission (AE) frequencies within the human audible range (20–20000 Hz) to diagnose knee OA, 2) correlate the qualitative visual scalogram analysis of the AE with OA symptoms, and 3) to do this based on information gathered during gait.INTRODUCTION
AIMS
Collagen-rich structures of the knee are prone to damage through acute injury or chronic “wear and tear”. Collagen becomes more disorganised in degenerative tissue e.g. osteoarthritis. An alignment index (AI) used to analyse orientation distribution of collagen-rich structures is presented. A healthy caprine knee was scanned in a Siemens Verio 3T Scanner. The caprine knee was rotated and scanned in nine directions to the main magnetic field B0. A 3D PD SPACE sequence with isotropic 1×1×1mm voxels (TR1300ms, TE13ms, FOV256mm,) was optimised to allow for a greater angle-sensitive contrast. For each collagen-rich voxel the orientation vector is computed using Szeverenyi and Bydder's method. Each orientation vector reflects the net effect of all the fibres comprised within a voxel. The assembly of all unit vectors represents the fibre orientation map. Alignment Index (AI) in any direction is defined as a ratio of the fraction of orientations within 20° (solid angle) centred in that direction to the same fraction in a random (flat) case. In addition, AI is normalised in such a way that AI=0 indicates isotropic collagen alignment. Increasing AI values indicate increasingly aligned structures: AI=1 indicates that all collagen fibres are orientated within the cone of 20° centred at the selected direction. AI = (nM - nRnd)/(nTotal - nRnd) if nM >= nRnd AI = 0 if nM < nRnd
nM is a number of reconstructed orientations that are within a cone of 20° centred in selected direction nRnd is a number of random orientations within a cone of 20° around selected direction nTotal is a number of collagen reach voxels By computing AI for a regular gridded orientation space we are able to visualise change of AI on a hemisphere facilitating understanding of the collagen fibre orientation distribution.Purpose
Method
Although knee osteoarthritis (OA) has first been thought to be a wear-and-tear disease of the articular cartilage, it is now established that it is a disease of the entire joint. Unfortunately, its complex physiopathology is still incompletely understood, limiting the design of efficient therapeutic options. Recently, it has been suggested that OA could be related to the breakdown of the relationships among knee tissues rather than to isolated alterations of one or more tissues. However, there is a paucity of data regarding relationships among knee tissues. Better understanding the bone and cartilage relationships is thus of particular interest as both tissues contribute to the transfer of the mechanical loads through the joint and altered loading is known to be a main factor of OA onset and progression. Specifically, there is an interest to determine if cartilage thickness (CTh) and subchondral bone mineral density (sBMD), two properties related to loading, are adapted in healthy femurs. CT-arthrography of the knee was performed unilaterally on 16 healthy subjects (8 males; 61.8± 2.8 years old). Bone and cartilage boundaries were segmented on the CT images in order to calculate 3D CTh and sBMD maps. sBMD was calculated as the average intensity of the CT-arthrography in the superficial 3mm of bone. The 3D CTh and sBMD maps were transformed into 2D anatomically-standardized maps to allow comparison among individuals. According to literature, relationships between CTh and sBMD were assessed both in terms of magnitude and spatial distribution. The magnitude of CTh and sBMD was quantified using the ratio between the (CTh and sBMD) values in the load-bearing region of the medial and lateral condyles. The spatial distribution was quantified using the location of thickest cartilage or densest bone in the load-bearing region of the medial condyle. Pearson correlations were performed between CTh and sBMD metrics, using an alpha-level at 5%.Background
Method
The knee radiograph is a commonly requested investigation as the knee joint is commonly injured. Each radiograph exposes 0.01mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation. Also, each knee radiograph costs approximately £37.16 to produce. The aim of the clinical audit was to use the Pittsburgh knee rules to attempt to reduce the number of knee radiographs taken in patients with acute knee injuries and hence reduce the dose of ionising radiation the patient receives. A retrospective audit was undertaken. 149 knee requests and radiographs taken during October 2016 were evaluated. Each knee radiograph request including patient history and clinical examination was graded against the Pittsburgh knee rules to give a qualifying score. The Pittsburgh knee rules assigns 1 point for each of the following; blunt trauma or a fall, age less than 12 years or over 50 years, and unable to take 4 limping weight bearing steps in the emergency department. A Pittsburgh knee rule qualifying score warranting a knee radiograph is 2 or more points, where the patient must have had blunt trauma or a fall. A Pittsburgh knee rule score less than 2 points predicts a non-fractured knee and hence no radiograph warranted. Each radiograph was reviewed if a fracture was present or not.Aim
Method
As the demand for primary total knee arthroplasty (TKA) has been on the rise, so will be the demand for revision knee surgery. Nevertheless, our knowledge on the modes of failure and factors associated with failure of knee revision surgery is considerably lower to that known for primary TKA. To date, this has been mostly based on case series within the literature. Therefore, the aim of this study was to evaluate the survivorship of revision TKA and determine the reasons of failure. A retrospective study was conducted with prior approval of the institutional audit department. This involved evaluation of existing clinical records and radiographs of patients who underwent revision knee surgery at our institution between 2003 and 2015. Re-revision was identified as the third or further procedure on the knee in which at least one prosthetic component was inserted or changed.Introduction
Methods
Administration of Botulinum toxin type A (BTX-A) in patients with spastic cerebral palsy aims to improve mobility by increasing joint range of motion and decreasing passive resistance. However, our recent animal experiments indicated that BTX-A can decrease muscle”s length range of force exertion (Lrange), and increase its passive forces and extracellular matrix (ECM) collagen content. Moreover, BTX-A injected into the tibialis anterior (TA) was shown to spread into non-injected synergistic muscles in the whole anterior crural compartment. These effects that contradict the treatment aims deserve further investigation. To test in a rat model if: (1) BTX-A injected into the medial and lateral gastrocnemius (GM&GL) muscles spreads into the synergistic soleus (SOL) as well as antagonistic TA and extensor digitorum longus (EDL). (2) The muscles exposed show a wider Lrange, decreased muscle passive force and reduced ECM collagen.Background
Aim
Because of its high strength and allowance for bone integration, Ti-6Al-4V is the most commonly used material for load bearing bone implants. Compared to conventional production methods, 3D printing Ti-6Al-4V introduces advantages as (near-) net-shape manufacturing of complex geometries, and optimization of utilization rate of the material. However, as result of the additively production procedure, microstructure and surface properties differ from those manufactured using conventional techniques. Therefore, the resulting mechanical properties and biocompatibility of the 3D printed Ti-6Al-4V are investigated in this study. First, it was aimed to reveal the tensile properties of the material and verify if these depend on build orientation. Second, it was determined which post process method provides the best osteoconductivity. Tensile specimens were designed and 3D printed using Selective Laser Melting (SLM) technique. Subsequently, specimens were heat treated and tensile properties were determined as described in ASTM E 8M-04. Cell culture discs were manufactured using the same production method. The influence of two different surface treatments (sand-blasting versus polishing) on osteoconductivity was analysed by a 30 day Introduction
Materials and methods
After the first big hype on additive manufacturing in medical industry the technology of 3D printing is now reaching a productive stage for some selected applications. These applications range from surgical models for visualisation to patient-specific cutting guides and 3D printed orthopaedic implants. This presentation will guide through current 3D printing applications in medical devices. We will show success stories for products in some of these fields and try to point out to a potential future of fully personalized orthopaedics in polymer and metals. A regulatory view on all aspects of 3D printing will be presented and potential hurdles to expand the full potential of medical device 3D printing.