Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP)
Aims. This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional
Aims. Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Methods. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and
Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results. A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After
Tennis elbow (lateral epicondylitis or lateral elbow tendinopathy) is a self-limiting condition in most patients. Surgery is often offered to patients who fail to improve with conservative treatment. However, there is no evidence to support the superiority of surgery over continued nonoperative care or no treatment. New evidence also suggests that the prognosis of tennis elbow is not influenced by the duration of symptoms, and that there is a 50% probability of recovery every three to four months. This finding challenges the belief that failed nonoperative care is an indication for surgery. In this
Aims. This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods. The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined
Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this
Prediction tools are instruments which are commonly used to estimate the prognosis in oncology and facilitate clinical decision-making in a more personalized manner. Their popularity is shown by the increasing numbers of prediction tools, which have been described in the medical literature. Many of these tools have been shown to be useful in the field of soft-tissue sarcoma of the extremities (eSTS). In this
Aims. Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear. Methods. Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and
Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this
Aim. Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Patients and Methods. Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
This study evaluates the association between consultant and hospital volume and the risk of re-revision and 90-day mortality following first-time revision of primary hip arthroplasty for aseptic loosening. We conducted a cohort study of first-time, single-stage revision hip arthroplasties (RHAs) performed for aseptic loosening and recorded in the National Joint Registry (NJR) data for England, Wales, Northern Ireland, and the Isle of Man between 2003 and 2019. Patient identifiers were used to link records to national mortality data, and to NJR data to identify subsequent re-revision procedures. Multivariable Cox proportional hazard models with restricted cubic splines were used to define associations between volume and outcome.Aims
Methods
This study describes the variation in the annual volumes of revision hip arthroplasty (RHA) undertaken by consultant surgeons nationally, and the rate of accrual of RHA and corresponding primary hip arthroplasty (PHA) volume for new consultants entering practice. National Joint Registry (NJR) data for England, Wales, Northern Ireland, and the Isle of Man were received for 84,816 RHAs and 818,979 PHAs recorded between April 2011 and December 2019. RHA data comprised all revision procedures, including first-time revisions of PHA and any subsequent re-revisions recorded in public and private healthcare organizations. Annual procedure volumes undertaken by the responsible consultant surgeon in the 12 months prior to every index procedure were determined. We identified a cohort of ‘new’ HA consultants who commenced practice from 2012 and describe their rate of accrual of PHA and RHA experience.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
Cite this article:
Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools. Cite this article:
The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.Aims
Methods
Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).Aims
Methods