Introduction: Meniscal
Introduction: Vertebroplasty is an established minimally invasive technique, which provides consistent and sustained pain relief in patients with vertebral fractures. However cement
Purpose. Injuries of the meniscal attachments can lead to meniscal
Introduction: From June 1991 to June 1995, 256 consecutive total hip arthroplasties using the Duraloc 100 TM acetabular shell, manufactured by Depuy, were performed by two surgeons. The acetabular component featured a non-locking apex hole eliminator. In January 1995 the first patient with
Introduction: Pressurization of PMMA can lead to cement
Purpose. to evaluate the radial displacement of meniscal allograft transplants (MATs) in patients operated with an open technique vs. an arthroscopic technique at 1 year postoperatively. Radial displacement or
Knee Osteoarthritis (KOA) is a prevalent joint disease requiring accurate diagnosis and prompt management. The condition occurs due to cartilage deterioration and bone remodeling. Ultrasonography has emerged as a promising modality for diagnosing KOA. Medial meniscus extrusion (MME), characterized by displacement of medial meniscus beyond the joint line has been recognized as a significant marker of KOA progression. This study aimed to explore potentials Ultrasound findings in timely detection of MME and compare it to magnetic resonance imaging (MRI) as a reference standard. A comprehensive literature search was performed in 4 databases from inception to May 1 2024. Two independent reviewers, initiated screening protocols and selected the articles based on inclusion and exclusion criteria and then extracted the data. Meta-analysis was conducted using R 4.3.2 packages mada and metafor.Introduction
Method
Muller-Weiss disease is an uncommon condition with unclear etiology and no gold standard treatment. The question arises; which joints to fuse? Although no consensuses prevail, one must postulate fusion should include those affected. Consequently, to establish an algorithm for its surgical management we set out to study clinical and radiographic features with use of SPECT-CT and a literature review. 57 consecutive feet presenting with Muller-Weiss disease analysed; 15 men, 25 women, age 22–84. Condition bilateral in 17, left side 16, right in 7 patients. Specific history and examination by senior author. Radiographic series and SPECT-CT obtained with surgery performed on significantly symptomatic feet. Measurements of Meary-Tomeno angles, anteroposterior thickness of navicular at the midpoint of each naviculo-cuneiform, alongside the medial
Background. The only existing classification of Müller-Weiss Disease (MWD), based solely on Méary's angle, serves neither as guide for prognosis nor treatment. This accounts for lack of gold standard in its management. Methods. Navicular compression, medial
Background. We have previously reported an injectable hydrogel (NPgel), which could deliver patients own stem cells, via small bore needles, decreasing damage to the annulus fibrosus. NPgel drives differentiation to NP cells and can inhibit the degenerate niche. However, clinical success of NPgel is dependent on the capacity to inject NPgel into naturally degenerate human discs, restore mechanical function to the IVD, prevent
Aims. Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing. Methods. Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral
Orthopaedic soft tissues, such as tendons, ligaments, and articular cartilage, rely on their unique collagen fiber architectures for proper functionality. When these structures are disrupted in disease or fail to regenerate in engineered tissues, the tissues transform into dysfunctional fibrous tissues. Unfortunately, collagen synthesis in regenerating tissues is often slow, and in some cases, collagen fibers do not regenerate naturally after injury, limiting repair options. One of the research focuses of my team is to develop functional fiber replacements that can promote in vivo repair of musculoskeletal tissues throughout the body. In this presentation, I will discuss our recent advancements in electrowriting 3D printing of natural polymers for creating functional fiber replacements. This manufacturing process utilizes electrical signals to control the flow of polymeric materials through an
Ganz's studies made it possible to address joint deformities on both femoral and acetabular side brought by the Legg-Calvè-Perthes disease (LCPD). Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency along with periacetabular osteotomy (PAO). The purpose of this study is to show the clinical and morphologic outcomes of the technique, and an implemented planning approach. From 2015 to 2023, 13 FHROs were performed on 11 patients for LCPD, in two centers. 11 of 13 hips had an associated PAO. A specific CT and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiographic parameters (sphericity index,
Introduction. Ink engineering can advance 3D-printability for better therapeutics, with optimized proprieties. Herein, we describe a methodology for yielding 3D-printable nanocomposite inks (NC) using low-viscous matrices, via the interaction between the organic and inorganic phases by chemical coupling. Method. Natural photocurable matrices were synthesized: a protein – bovine serum albumin methacrylate (BSAMA), and a polysaccharide – hyaluronic acid methacrylate (HAMA). Bioglass nanoparticles (BGNP) were synthesized and functionalized via aminosilane chemistry. The functionalization of BSAMA, HAMA, and BGNP were quantified via NMR. To arise extrudable inks, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry was used to link innate carboxylic groups of BSAMA/HAMA and amine-functionalized BGNP. Different crosslinker and BGNP amounts were tested. Visible light photopolymerization is performed, using lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The NC's rheological, mechanical, and biological behavior was evaluated before 3D
Nanovesicle-based therapy is increasingly being pursued as a safe, cell-free strategy to combat various immunological, musculoskeletal and neurodegenerative diseases. Small secreted extracellular vesicles (sEVs) obtained from multipotent mesenchymal stromal cells (MSCs) are of particular interest for therapeutic use since they convey anti-inflammatory, anti-scarring and neuroprotective activities to the recipient cells. Cell-derived vesicles (CDVs) produced by a proprietary
The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar. All identified citations were uploaded into Rayyan.ai and screened by at least two reviewers. The search resulted in 3569 hits. 14 studies were included: 1 review, 3 clinical trials and 10 pre-clinical trials. Clinical trials: a total of 21 children (32 femurs and 5 tibiae) were included. Surgical methods were 2 canulated screws connected by cable, PediPlates obliquely oriented, and separated Hinge Plates connected by FiberTape. Rotation was achieved in all but 1 child. Adverse effects reported include limb length discrepancy (LLD), knee stiffness and rebound of rotation after removal of tethers. 2 pre-clinical studies were ex-vivo studies, 1 using 8-plates on Sawbones and 1 using a novel z-shaped plates on human cadaver femurs. There were 5 lapine studies (2 using femoral plates, 2 using tibial plates and 1 using an external device on tibia), 1 ovine (external device on tibia), 1 bovine (screws and cable on metacarp) and a case-report on a dog that had an external device spanning from femur to tibia. Rotation was achieved in all studies. Adverse effects reported include implant
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built
Critical-sized bone defects can result from trauma, inflammation, and tumor resection. Such bone defects, often have irregular shapes, resulting in the need for new technologies to produce suitable implants. Bioprinting is an additive manufacturing method to create complex and individualised bone constructs, which can already include vital cells. In this study, we established an extrusion-based printing technology to produce osteoinductive scaffolds based on polycaprolactone (PCL) combined with calcium phosphate, which is known to induce osteogenic differentiation of stem cells. The model was created in python based on the signed distance functions. The shape of the 3D model is a ring with a diameter of 20 mm and a height of 10 mm with a spongiosa-like structure. The interconnected irregular pores have a diameter of 2 mm +/− 0.2 mm standard deviation. Extrusion-based printing was performed using the BIO X6. To produce the bioink, PCL (80 kDa) was combined with calcium phosphate nanopowder (> 150 nm particle size) under heating. After printing, 5 × 10. 6. hMSC were seeded on the construct using a rotating incubator. We were able to print a highly accurate ring construct with an interconnected pore structure. The PCL combined with calcium phosphate particles resulted in a precise printed construct, which corresponded to the 3D model. The bioink containing calcium phosphate nanoparticles had a higher printing accuracy compared to PCL alone. We found that hMSC cultured on the construct settled in close proximity to the calcium phosphate particles. The hMSC were vital for 22 days on the construct as demonstrated by life/dead staining. The
Cartilage lesions often undergo irreversible progression due to low self-repair capability of this tissue. Tissue engineered approaches based in