Objective. In this study, we aim to compare total bone amount extracted in total knee arthroplasty in implant design and the bone amount extracted through
Purpose. The purpose of this study was to determine whether intra-operative identification of osseous ridge anatomy (lateral intercondylar “residents” ridge and lateral bifurcate ridge) could be used to reliably define and reconstruct individuals' native femoral ACL attachments in both single-bundle (SB) and double-bundle (DB) cases. Methods. Pre-and Post-operative 3D, surface rendered, CT reconstructions of the lateral
Introduction: Bone resorption at the bone-implant interface is still a problem, leading to pain, poor function and the possibility of bone fracture. This loss of supporting bone tissue is due to resorption and impaired bone formation. Loosening of an implant is often not clinically or radiographically apparent for 8–10 years. It would be beneficial if these potential failures could be identified early so that revision surgery can be avoided. The aim of this study was to investigate the influence of implant material property changes and its influence on the trabecular loading patterns of the underlying supporting bone structure. Methods: An intact and reconstructed 3D finite element (FE) model of a human femur was developed. The model was generated using PATRAN and CT scans. This was used to determine the stress, strain and interface sliding of a knee implant at heel-strike and stair climbing phases of gait. FE analysis of the model was performed using ABAQUS software. The materials properties of the bone were extracted from the CT data and applied using FORTRAN subroutines. Implant-bone interfaces were simulated using cementless fixation concepts. Sliding contact conditions were applied to simulate the immediate post-operative period. Results: Three material property cases were analysed, with respect to the intact bone, at 100%, 25% and 2.5% of cobalt chrome’s (CoCr) Youngs modulus. At heel-strike, for the 100% case, higher stress was found at anterior flange while lower stress dominated around the pegs and
Introduction: Appropriate femoral component alignment is important for long-term survival of total knee arthroplasty (TKA). Valgus angle of femoral component is recommended as the angle between mechanical axis and anatomical axis of the femur. Intramedullary guide system is widely used for determining the valgus positioning of femoral component. Entry point of intramedullary guide is one of the key factors for determining valgus angle of femoral component. Some investigators have shown appropriate entry points of intramedullary guide, however, it is still unclear. In this study, appropriate entry point of intramedullary guide system was calculated using three-dimensional digital templating software “Athena” (Soft Cube, Osaka, Japan). Method: Forty-one knees in 34 osteoarthritis patients except valgus deformity (30 females and 4 males, mean age 75.1 years) received TKA and were simulated using “Athena” from January 2009 to March 2009. All cases were grade III or IV in Kellgren-Lawrence index. Radiograph and CT scan image were used for determination of appropriate entry point of femur using “Athena”. The anatomical axis of femur was defined as a line connecting the midpoints of femoral AP and lateral diameter, at 60 mm and 110 mm proximal to the center of
Patellofemoral complaints are the common and nagging problem after total knee arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedures depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implant's
Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model. NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the
Patellofemoral complaints are the common and nagging problem after Total Knee Arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedure depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents a when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implants
Patellofemoral arthroplasty (PFA) has higher revision rates than total knee arthroplasty (TKA) [Van der List, 2015; Dy, 2011]. Some indications for revision include mechanical failure, patellar mal-tracking, implant malalignment, disease progression and persistent pain or stiffness [Dy, 2011; Turktas, 2015]. Implant mal-positioning can lead to decreased patient satisfaction and increased revision rates [Turktas, 2015]. Morphological variability may increase the likelihood of implant mal-positioning. This study quantifies the morphological variability of the anterior-posterior (AP) and medial-lateral (ML) aspects of the patellofemoral compartment using a database of computed tomography (CT) scans. The analysis presented here used the custom CT based program SOMA (SOMA V.4.3.3, Stryker, Mahwah, NJ). SOMA contains a large database of 3D models created from CT scans. Anatomic analysis and implant fitting tools are also integrated into SOMA to perform morphometric analyses. A coordinate system is established from the femoral head center, the
Background: Arthroscopic visualisation of the postero-medial and posterolateral compartments of the knee through the
Introduction. The aim of this radiographic study was to define the anatomical axis joint centre distance (aJCD) and anatomical axis joint centre ratio (aJCR) of the distal femur in the coronal plane for skeletally mature individuals. Materials and Methods. A cross-sectional radiographic study was conducted to calculate the horizontal distances between the anatomical axis and the centre of the knee at the level of the
Introduction. Alignment and positioning of implants is important in total knee arthroplasty (TKA). Identifying the femoral hip center (FHC) without fluoroscopy or computer navigation is considered difficult. The Complete Compass system (CoCo) is a femoral extramedullary guidance system designed to identify the FHC. This apparatus provides an accurate representation of the femoral functional axis in the coronal plane without a computer navigation system. We compared postoperative implant alignment of patients undergoing total knee arthroplasty between CoCo and intraoperative computer navigation. Materials and Methods. Twenty-five consecutive TKAs using CoCo were analyzed. CoCo has a pivotal arm with a pivotal shaft arranged to extend perpendicular to the coronal plane. A marker is attached to the pivotal arm to depict a circular arc on the marking plate with rotation of the pivotal arm. The pivotal shaft is placed at the
Introduction We describe an arthroscopic technique of excising a lesion from within the posterior septum of the knee. To our knowledge this has not been described in the literature. Case History A 35-year old male taxi-driver presented with pain in the back of his right knee. Examination did not reveal any abnormality except pain on flexing the knee beyond 90-degrees. MRI showed a multiloculated ganglion in the posterior compartment of the knee. The ganglion was located within the posterior septum and successfully excised arthroscopically. 6-months postoperatively the patient is assyptomatic. Anatomy of the posterior septum The posterior septum is located between the posterior cruciate ligament (PCL) and the posterior capsule dividing the posterior cavity of the knee into seperate posteromedial and posterolateral compartments. It is triangular in shape, formed by the reflections of the synovium from the PCL. The Technique The posterior septum of the knee was approached through the
Introduction. Anteromedial osteoarthritis of the knee (anteromedial gonarthrosis-AMG) is a common form of knee arthritis. In a clinical setting, knee arthritis has always been assessed by plain radiography in conjunction with pain and function assessments. Whilst this is useful for surgical decision making in bone on bone arthritis, plain radiography gives no insight to the earlier stages of disease. In a recent study 82% of patients with painful arthritis had only partial thickness joint space loss on plain radiography. These patients are managed with various surgical treatments; injection, arthroscopy, osteotomy and arthroplasty with varying results. We believe these varying results are in part due to these patients being at different stages of disease, which will respond differently to different treatments. However radiography cannot delineate these stages. We describe the Magnetic Resonance Imaging (MRI) findings of this partial thickness AMG as a way of understanding these earlier stages of the disease. Method. 46 subjects with symptomatic partial thickness AMG underwent MRI assessment with dedicated 3 Tesla sequences. All joint compartments were scored for both partial and full thickness cartilage lesions, osteophytes and bone marrow lesions (BML). Both menisci were assessed for extrusion and tear. Anterior cruciate ligament (ACL) integrity was also assessed. Osteophytes were graded on a four point scale in the
Introduction. Intramedullary femoral alignment guide is mostly used in total knee arthroplasty (TKA). Accurate preoperative plan is critical to get good alignments when we use intramedullary femoral guide, because the center of femoral head cannot be looked directly during operation. Commonly, the planning is carried out using preoperative anteroposterior radiographs of the femur. The angles formed between mechanical axes of the femur and distal femoral anatomic axes (AMA) are measured as reference angles of resection of distal femur, and the entry points of intramedullary femoral guide are also planned. The purpose of this study is to investigate the influence of femoral position on radiographic planning in TKA. Materials and Methods. We examined 20 knees of 20 female patients who received TKA. Fourteen patients suffered from primary osteoarthritis of the knees, and 6 suffered from rheumatoid arthritis. Fifteen patients have varus knee deformities and 5 patients have valgus knee deformities. Long leg computed topography scans were performed in all cases before operations, and all images were stored in DICOM file format. The analyses were performed with computer software (3D template, JMM, Osaka, Japan) using DICOM formatted data. The planes containing the center of femoral head and transepicondylar axes were defined as reference planes, and the reference planes were fixed all through analyses. At first, to assess the influence of femoral rotation, the femur was rotated from 30 degrees external rotation to 30 degrees internal rotation in 5 degrees increments in full extension. After that, to examine the influence of knee flexion, the knee was bended from full extension to 30 degrees flexion in 5 degrees increments in neutral rotation. Reconstructed coronal planes parallel to the reference planes were made, the angles between mechanical axes of the femur and distal femoral anatomic axes (AMA) and the distance from entry points to the center of femoral
Introduction: The infrapatellar fat pad was first described in 1904 by Albert Hoffa. Sometimes disregarded, it is apparent that the infrapatellar fat pad is of importance to knee joint function as fat at this site is only lost in severely emaciated individuals. Also, recent MRI studies have described various pathological changes affecting the fat pad. This study examined the anatomy of the infrapatellar fat pad in relation to knee symptoms and surgical approaches. Materials and Methods: 8 preserved knees were dissected via semicircular parapatellar incisions extending from the tibial tubercle to the superior patellar border and including the quadriceps muscle 13 cm above the superior border of the patella. The synovial membrane of the joint and the ligamentum mucosum were divided and the tibial tubercle was then excised. The resultant tissue complex was removed and the fat pad dissected away from surrounding structures. The appearance, volume and presence of any clefts in the pad were recorded. The cadaveric dissections were then compared to direct observation of the fat pad during total knee replacement, during arthroscopy and on MR imaging. Results: The infrapatellar fat pad was found to be present in all cases. It had a consistent shape consisting of a central mass with medial and lateral extensions. The ligamentum mucosum was attached to the
Purpose. Leg length discrepancy after total hip arthroplasty (THA) sometimes causes significant patient dissatisfaction. In consideration of the leg length after THA, leg length discrepancy is often measured using anteroposterior (AP) pelvic radiography. However, some cases have discrepancies in femoral and tibial lengths, and we believe that in some cases, true leg length differences should be taken into consideration in total leg length measurement. We report the lengths of the lower limb, femur, and tibia measured using the preoperative standing AP full-leg radiographs of the patients who underwent THA. Materials and methods. From August 2013 to February 2017, 282 patients underwent standing AP full-leg radiography before THA. Of the patients, 33 were male and 249 were female. The mean age of the patients was 65.7±9.4 years. We measured the distances between the center of the tibial plafond and lesser trochanter apex (A-L), between the femoral
In performing posterior cruciate ligament- retaining total knee arthroplasty (CR-TKA), the original surgical instrument was devised to obtain the range of motion and stability of the knee joint adequate for daily life of Japanese people. We have presumed the tentative joint line as
Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral
Introduction. Current techniques in total knee arthroplasty aim to restore the coronal mechanical axis to neutral. Preoperative planning has historically been based on long-leg standing films (LLSF) which allow surgeons to plan bony resection and soft tissue releases. However, LSSF can be prone to error if malrotated. Recently, patient-specific guides (PSG) utilizing supine magnetic resonance imaging (sMRI) have become an accepted technique for preoperative planning. In this study we sought to compare the degree of coronal deformity using LLSF and sMRI. Methods. Two hundred thirty knees underwent planning for total knee arthroplasty with sMRI and LLSF. Coronal plane deformity was determined based on the femoral-tibial angle (FTA) as defined by the angle formed between a line from the center of the femoral head to the
Background:. The Lateral Intercondylar Ridge (LIR) gained notoriety with arthroscopic trans-tibial Anterior Cruciate Ligament (ACL) reconstruction where it was mistakenly used to position the ‘over the top’ guide resulting in graft malposition. With anatomic ACL reconstruction some surgeons use the same ridge to define the anterior margin of the ACL femoral insertion in order to guide graft placement. However there is debate about whether this ridge is a consistent and reliable anatomical structure. The aim of our study was to identify whether the LIR is a consistent anatomical structure and to define its relationship with the femoral ACL insertion. Methods:. In the first part, we studied 23 dry bone specimens. Using a digital microscribe, we created a 3D model of the medial surface of the lateral femoral condyle to evaluate whether there was an identifiable bony ridge. In the second part, we studied 7 cadaveric specimens with soft tissues intact. The soft tissues were dissected to identify the femoral ACL insertion. A 3D reconstruction of the femoral insertion and the surface allowed us to define the relationship between the LIR and the ACL insertion. Results:. All specimens (23 dry bones; 7 intact soft tissues) had a defined ridge on the medial surface of the lateral femoral condyle. The ridge extends from the apex point of the lateral