Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between
Introduction. Dislocation following total hip arthroplasty THA is a major short term complication not infrequently resulting in revision arthroplasty. Malposition of the acetabular component in THA results in a higher rate of dislocation as well as increased wear and osteolysis. The aim of this study was to assess the effect of mode of fixation on positioning of the acetabular component. Patients, materials and methods. For all THAs performed at our hospital in 2008, angle of
We present a study done to measure the change of angle of the acetabulum or cup, due to leg length discrepancy, deformity of hip and spine on standing. In 1998 a 3-dimensional reconstruction of hip model was prepared on CAD and the change of angle of the cup was measured as Functional
Positioning of the acetabular component in total hip arthroplasty has profound effects on the biomechanics, stability and wear of the prosthesis. Normal anatomical position in females is 57 degrees (50 – 67 degrees) inclination with 19 degrees (9 – 32 degrees) of anteversion, whilst in males 56 degrees of inclination (48 – 66 degrees) with 19 degrees (9 – 32 degrees) is normal. In total hip arthroplasty, inclination recommendation ranges from 30 – 50 degrees. The aim of this study was to radiographically measure acetabular component position in total hip arthroplasty and compare to normal values. The Widmer method was used by two independent observers to radiographically measure inclination in 522 patients using standard AP radiographs. Primary measures and variables were statistically analysed as was inter and intra observer reliability. All patients included within the study received total hip arthroplasty for age related degenerative changes to the hip. Operations were undertaken by 17 separate consultants or senior registrars under their care.Background
Method
The angle of
Radiological Inclination (RI) is defined as the angle formed between the acetabular axis and the longitudinal axis when projected onto the coronal plane. Higher RI angles are associated with adverse outcomes. Primary aim: to investigate the effect of adjusting patient pelvic position in the transverse plane by using a ‘head-down’ (HD) operating table position. This was to determine, when aiming for 35° Apparent Operative Inclination (AOI), which operating table position most accurately achieved a target post-operative RI of 42°. N=270. Patients were randomised to one of three possible operating table positions: 0°HD (Horizontal), 7°HD, or Y°HD (Patient Specific Table Position) Operating table position was controlled using a digital inclinometer. RI was measured using EBRA software.Introduction
Methods
Operative inclination (OI) is defined as the angle between the acetabular axis and the sagittal plane. With the patient in the true lateral decubitus position, this corresponds to the angle formed between the handle of the acetabular component inserter and the theatre floor intra-operatively. The primary study aim was to determine which method of acetabular component insertion most accurately allows the surgeon to obtain a target OI of 35o. 270 consecutive patients undergoing cementless THA were randomised to one of three possible methods for acetabular component implantation: 1. Freehand, 2. 35o mechanical alignment guide (MAG), or 3. Digital inclinometer assisted Two surgeons participated. Target OI was 35o in all cases. OI was measured using a digital inclinometer. For the freehand and MAG cases, the surgeon was blinded to inclinometer readings intra-operatively.Introduction
Patients/Materials & Methods
The purpose of this study was to examine the utility of the acetabular component introducer as a tool to intra-operatively predict implant inclination in total hip arthroplasty. This study investigated (1) the correlation between intra-operative photographic assessment of cup inclination using the acetabular introducer and that measured on post-operative radiograph; and (2) the accuracy of intra-operative prediction of abduction angle. For this study, we prospectively recruited 56 patients scheduled to receive primary hip arthroplasty from one of two senior surgeons. During the procedure, the lead surgeon provided a prediction of the abduction angle based on the alignment of the impactor attached to the cup in its final seated position. A standardized anteroposterior (AP) photograph was then taken of the acetabular impactor in situ. Abduction angles were measured by two observers on the photographs and post-operative AP pelvis radiographs. Linear regression was used to determine the correlation between the angle of the guide measured on the photographs and the actual position of the implant measured on the radiograph. Descriptive statistics were further used to analyze the accuracy of the intra-operative prediction as compared with the abduction angle measured on the photographs. Measurements of cup position made from post-operative radiographs were significantly correlated with the measurements as assessed by intra-operative photographs (r = 0.34, p = 0.00). Our findings demonstrate that radiological abduction angles tend to be greater than that assessed by intra-operative photographs by a mean of 5.6 degrees (SD = 6.6 degrees; 95% CI = 7.3 to 3.9 degrees). Conversely, surgeon prediction of cup inclination based on the acetabular introducer differed from the radiographic measurements by a mean of 6.8 degrees (SD = 8.7 degrees). There was good agreement between the two observers in both photographic and radiographic measurement (k = 0.95, k = 0.96, respectively). In conclusion, we found that the intra-operative photographic assessment of
Introduction: Hip resurfacing is a successful pain-relieving procedure which restores function in young patients. However, some patients have persisting pain. We suggest that load characteristics in relation to position of the cup may influence these symptoms. We aimed to determine the effect of
Achieving the correct inclination angle for the acetabular component in total hip arthroplasty (THR) can be technically challenging. The aim of this study is to validate the use of a simple, laser-guided system to address the
In total hip arthroplasty (THA), a high radiographic inclination angle (RI) of the acetabular component has been linked to an increased dislocation rate, liner fracture, and increased wear. In contrast to version, we have more proven boundaries when it comes to a safe zone for angles of RI. Although intuitively it seems easier to achieve a target RI, most studies demonstrate a lack of accuracy and the trend towards a high RI with all surgical approaches when using a freehand technique or a mechanical guide. This is due to pelvic motion during surgery, which can be highly variable. The current study had two primary aims, each with a different primary outcome. The first aim was to determine how accurate a surgeon could obtain the target operative inclination (OI) during THA when using a cementless cup using a digital protractor. The second aim was to determine how accurate a surgeon can estimate the target OI to obtain a RI of 40° based on the patient's hip circumference as demonstrated in a previous study. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target OI based on the patient's hip circumference (22.5°, 25°, 27.5° or 30°). Intraoperatively, the effective OI was measured with the aid of a digital inclinometer after seating of the acetabular component. Six weeks postoperatively anteroposterior pelvic radiographs were made and two evaluators, blinded to the effective OI, measured the RI of the acetabular component. The safe zone for inclination was defined as 30°-45° of inclination.Introduction
Methods
Aims. Periacetabular osteotomy (PAO) is well established for acetabular reorientation and has shown successful improvement in patient-reported outcome measures (PROMs). Nevertheless, studies focusing on postoperative outcomes related to patient individual factors are still underrepresented. Therefore, this study aimed to analyze the functional outcome and activity level in relation to patient sex with a minimum follow-up of two years after PAO for mild to severe hip dysplasia. Methods. A single-centre study was conducted, enrolling patients undergoing PAO and completing a preoperative and postoperative radiological and clinical outcome assessment. The PROMs were assessed using the modified Harris Hip Score (mHHS), the Hip disability and Osteoarthritis Outcome Score (HOOS) with the subscales for pain, sport, activities of daily living (ADL), and quality of life (QoL), and the University of California, Los Angeles (UCLA) activity score. Kendall’s tau were calculated for correlation analyses. Results. In total, 145 patients (28 male, 117 female) were included. The PROMs improved significantly across males and females at the latest follow-up. Female patients had significantly lower preoperative PROMs: mHHS (47 vs 57.4; p = 0.002); HOOS pain (44.9 vs 60; p = 0.003), sport (47 vs 57.4; p = 0.002), ADL (58.9 vs 69.3; p = 0.032), and QoL (26.8 vs 39.3; p = 0.009); and UCLA (5.6 vs 6.7, p = 0.042) scores. Males showed higher postoperative UCLA scores (7.5 vs 6.7; p = 0.03). Kendall’s tau showed significant negative correlation between BMI and UCLA scores in females and males (-0.21 to -0.29; p = 0.002/0.048), while BMI and HOOS sport (-0.16; p = 0.015) and ADL (-0.2; p = 0.003), as well as QoL (-0.14; p = 0.031) and preoperative
Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of
Highly cross-linked polyethylene (HXLPE) has decreased wear and revision rates in total hip replacement (THR) at a long-term. However, the effect of HXLPE manufacturing characteristics on femoral head penetration has not been clearly defined yet. We report this single-institution study to investigate the clinical and radiological results of different HXLPE liners in THR. In this retrospective cohort analysis of our prospective database, we identified 904 THRs performed between 2000 and 2013. Seven different HXLPE liner types were assessed: remelted (3), annealed (2), sequentially annealed (1) and vitamin E-infused (1). The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Roman Software v1.70 package. Thirty hips were revised for the following reasons: aseptic loosening (11), dislocation (12), periprosthetic femoral fracture (6), and infection (1). No hip was revised for wear or osteolysis. 741 THRs were evaluated for a mean follow-up of 15 years (range, 10 to 20). The mean total penetration 15 years after THR was 0.17 mm in the sequentially annealed, and 0.16 mm in the vitamin E-infused groups, whereas it was 0.26 mm in the melted 95 kGy, 0.27 mm in the melted 5 Mrad and 0.25 mm in the melted 100 kGy groups (p=0.001). From one to 15 years after surgery, the mean wear was 0.206 mm in cups with an
Introduction. Primary robotic-arm assisted total hip arthroplasty (THA) yields more accurate and reproducible acetabular cup placement, nonetheless, data is scarce in terms of outcomes. The purpose of the present study was to report on patient-reported outcomes (PROMs) in a large group of patients who underwent robotic-arm assisted THA. The authors hypothesized that (1) patients who underwent robotic-arm assisted primary THA would achieve favorable and significant improvement in PROMs, (2) an accurate and reproducible acetabular cup placement with respect to the defined SafeZones would be obtained, and (3) a low rate of THA dislocation would be observed. Methods. Prospectively collected data were retrospectively reviewed between April 2012 to May 2017. Primary THA using Mako Robotic-Arm [Mako Surgical Corp. (Stryker), Fort Lauderdale, FL, USA] with minimum two-year follow-up for the Harris Hip Score (HHS) and the Forgotten Joint Score-12 (FJS-12) were included. Exclusion criteria were: bodymass index (BMI) > 40 kg/m2, age < 21-year old, worker's compensation, or unwilling to participate. Visual analog scale (VAS) for pain and patient satisfaction were obtained. Intraoperative measurements for leg-length, global offset,
Objectives. Acetabular component orientation in total hip arthroplasty (THA)
influences results. Intra-operatively, the natural arthritic acetabulum
is often used as a reference to position the acetabular component.
Detailed information regarding its orientation is therefore essential. The
aim of this study was to identify the
Developmental dysplasia of the hip can cause pain and premature osteoarthritis. However, the risk factors and timing for disease progression in young adults are not fully defined. This study identified the incidence and risk factors for contralateral hip pain and surgery after periacetabular osteotomy (PAO) on an index dysplastic hip. Patients followed for 2+ years after unilateral PAO were grouped by eventual contralateral pain or no-pain, based on modified Harris Hip Score, and surgery or no-surgery. Univariate analysis tested group differences in demographics, radiographic measures, and range-of-motion. Kaplan-Meier survival analysis assessed pain development and contralateral hip surgery over time. Multivariate regression identified pain and surgery risk factors. Pain and surgery predictors were further analyzed in Dysplastic, Borderline, and Non-dysplastic subcategories, and in five-degree increments of lateral center edge angle (LCEA) and
Introduction. When performing a total hip arthroplasty (THA), some surgeons routinely perform an intraoperative anteroposterior (AP) pelvis radiograph to assess components. The purpose of this study was to evaluate the reliability of the intraoperative radiograph to accurately reflect
The purpose of this study was to examine a cohort of patients with minor acetabular dysplasia features in order to identify the preoperative clinical characteristics and imaging findings that differentiate patients with hip instability from patients with impingement. A retrospective cohort study of patients with borderline acetabular dysplasia was performed. All patients were identified by prospective radiographic evaluation with an LCEA between 20° and 25°. Multivariate statistical analyses were used to identify independent predictors of disease type. Of the 143 hips in the cohort, 39.2% (n=56) had the diagnosis of instability, while 60.8% (n=87) had the diagnosis of impingement. The cohort included 109 females (76.2%) and 34 males (23.8%). Hips with instability had a lower LCEA (21.8° vs. 22.8°; p<0.001), lower ACEA (23.3° vs. 26.6°; p=0.002), a higher AI (11.8° vs. 8.5°; p<0.001), and a lower maximum alpha angle (54.4° vs. 61.1°; p=0.001). The odds of instability increased 1.7 times for each one-degree decrease in LCEA, 1.4 times for each one-degree decrease in ACEA, and 1.1 times for each one-degree increase in
Introduction. Studies of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) have reported high complication and failure rates due to elevated metal ion levels. These rates were shown to be especially high for the Articular Surface Replacement (ASR) HRA, possibly due to its unique design. Associations between metal ion concentrations and various biological and mechanical factors have been reported. Component positioning as measured by