Ligaments which heal spontaneously have a healing process that
is similar to skin wound healing. Menopause impairs skin wound healing
and may likewise impair ligament healing. Our purpose in this study
was to investigate the effect of surgical menopause on ligament
healing in a rabbit medial collateral ligament model. Surgical menopause was induced with ovariohysterectomy surgery
in adult female rabbits. Ligament injury was created by making a
surgical gap in the midsubstance of the medial collateral ligament.
Ligaments were allowed to heal for six or 14 weeks in the presence
or absence of oestrogen before being compared with uninjured ligaments. Molecular
assessment examined the messenger ribonucleic acid levels for collagens,
proteoglycans, proteinases, hormone receptors, growth factors and
inflammatory mediators. Mechanical assessments examined ligament
laxity, total creep strain and failure stress.Objectives
Methods
Lubricin is a proteoglycan that is a boundary lubricant in synovial joints and both a surface and collagen inter-fascicular lubricant in ligaments. The purpose of this study was to characterise the
Our aim was to determine the effect of denervation on repair-associated
Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into annulus fibrosus (AF), nucleus pulposus (NP) and endplate, which was confirmed histologically. Separate cell cultures of AF and NP (n=20) were established and characterized using cell type-specific markers. Potential binding sites for galectins including sialylated N-glycans and LacdiNAc structures were determined in AF and NP cells using LC/ESI-MS-MS. To assess galectin functions, cell cultures were treated with recombinant galectin-4 or −8, in comparison to IL-1β, and analyzed using RT-qPCR and In-cell Western blot. In vitro, both galectins triggered the induction of functional disease markers (CXCL8 and MMP3) on
This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001)
Introduction. Tendinopathies represent a significant health burden, causing inflammation, pain, and reducing quality of life. The pivotal role of macrophages (Mφ) characterized by their ability to differentiate into proinflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the microenvironment, has gained significant interest in tissue inflammation research. Additionally, existing literature states that the interplay between tenocytes and immune cells during inflammation involves unidentified soluble factors (SF). This study aimed to investigate the effect of extracellular vesicles (EVs) and SF derived from polarized Mφ on tendon cells to provide deeper insights of their potential therapeutic applications in the context of inflammation. Method. Human monocytes were isolated from blood donor buffy coats and differentiated into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, EVs were isolated from the conditioned media from polarized Mφ and comprehensively characterized. In parallel, the elution media containing SF was collected. Furthermore, the EVs and SF were released independently onto tenocytes from human donors, previously induced with IL-1β to simulate an inflammatory environment. Finally,
Introduction. Macrophages phagocytes implant wear debris and produce various cytokines to evoke inflammation and periprosthetic osteolysis of aseptic loosening. It had been reported that expression of Toll-like receptor (TLR) 2 and other TLRs increased in periprosthetic tissues of aseptic loosening. Pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs) have been known as ligands of TLRs and considered to be involved in the osteolytic reactions via TLRs. Another type of immune sensors, nucleotide-binding and oligomerization domain (NOD)-like receptors (NLR) with a pyrin domain 3 (NLRP3) can also recognize PAMPs and DAMPs as their lignds, which has been presumed to participate in the local host response of macrophage cascade via phagocytosis of implant wear particles. However, the contribution of NLRP3 in periprosthetic tissues of aseptic loosening and the correlation between TLR2 and NLRP3 are still unclear. Materials and methods. TLR1, TLR2, TLR6, NLRP3, TNF-α and IL-1β of macrophages in aseptic loose periprosthetic tissues were immnohistorically evaluated and compared to osteoarthritic synovium. RAW264.7 cells, macrophagic cell line, were stimulated by titanium particles (Ti) and lipoteichoic acid (LTA)-coated Ti. The celluar reaction associated with TLR2 and NLRP3 and the correlation of them were analyzed at
Introduction: Periosteum is a tissue with pluripotential mesenchymal cells (MSCs). During fracture repair several growth factors are released from periosteum, including bone morphogenetic proteins (BMPs), which induce the differentiation of bone marrow stromal cells towards the osteoblastic lineage, therefore increasing the pool of mature bone forming cells and enhance the differentiated function of osteoblasts. The purpose of our study is to evaluate the expression of periosteal BMPs mRNA from fracture samples, collected within 24 hours of fracture and to compare it with BMPs expression from periosteal samples of normal (non-fractured) bones. Materials and Methods: Periosteum samples were collected from 25 patients with recent fracture (during the past 24 hours) (age: 12–80) and 25 individuals without fracture (age: 10–73). BMPs (BMP2, BMP4, BMP6)
The poor prognosis of patients with soft-tissue sarcoma as not changed in the past several decades, highlighting the necessity for new therapeutic approaches. T-cell based immunotherapies are a promising alternative to traditional cancer treatments due to their ability to target only malignant cells, leaving benign cells unharmed. The development of successful immunotherapy requires the identification and characterization of targetable immunogenic tumor antigens. Cancer-testis antigens (CTA) are a group of highly immunogenic tumor-associated proteins that have emerged as potential targets for CD8+ T-cell recognition. In addition to identifying a targetable antigen, it is crucial to understand the tumor immune microenvironment. The level of immune infiltration and mechanisms of immune suppression within the tumor play important roles in the outcome of immunotherapy. The goal of this study is to identify targetable immunogenic antigens for T-cell based immunotherapy and to characterize the tumor immune microenvironment in human dedifferentiated liposarcoma (DDLS) by Nanostring and IHC. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens we used the nCounter NanoString platform to generate a gene expression profile for hundreds of genes from RNA obtained from 29 DDLS and 10 control fat FFPE samples. To classify inflammatory status of DDLS tumors, we performed hierarchical clustering based on expression levels of selected tumor inflammatory signature genes (CCL5, CD27, CD274, CD276, CD8A, CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-E, IDO1, LAG3, PDCDILG2, PSMB10, STAT1, TIGIT). To confirm protein expression and distribution of identified antigens, we performed immunohistochemistry on human tissue micro-arrays encompassing DDLPS tumor tissues and matched normal control tissue from 63 patients. IHC for the cancer testis antigens PBK, SPA17, MAGE-A3, NY-ESO-1 and SSX2 was performed, and the staining results were scored by two authors based on maximal staining intensity on a scale of zero to three (absent=0, weak=1, moderate=2, or strong=3) and the percentage of tumor cells that stained. Hierarchical clustering of DDLS tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumor and 14 non-inflamed tumors, demonstrating tumor heterogeneity within the DDLS sarcoma subtype. All antigens were found to be expressed in DDLS at an
Introduction:. Exercise has showed to reduce pain and improve function in patients with discogenic low back pain (LBP). Although there is currently no biologic evidence that the intervertebral disc (IVD) can respond to physical exercise in humans, a recent study has shown that chronic running exercise is associated with increased IVD hydration and hypertrophy1. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types, including chondrocytes2. This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs). Our hypothesis is that irisin may improve hNPCs metabolism and proliferation. METHODS:. The hNPCs, isolated from discectomy surgical waste material (n = 5), were expanded and encapsulated in alginate beads. The hNPCs were treated with: i) only growth medium (control); ii) medium with recombinant irisin (r-IR) at different concentrations (5, 10 and 25 ng / mL); iii) medium with Interleukin-1β (IL1β); iv) medium with IL1β for 24 h and then with IL1β and r-IR; v) medium with r-IR for 24 h and then with r-IR and IL1 β. We evaluated proliferation (trypan blue and PicoGreen), metabolic activity (MTT), nitrite concentration (Griess), and expression levels of catabolic and anabolic genes via real-time polymerase chain reaction (qPCR). Each analysis was performed in triplicate for each donor and each experiment was performed three times. Data were expressed as mean ± S.D. One-way ANOVA was used for the groups under exam. RESULTS:. Irisin increased hNPCs proliferation (p < 0.001), metabolic activity at 10 ng/mL (p < 0.05), and GAG content at concentration of 10 ng/mL and 25 ng/mL (p < 0.01; p < 0.001, respectively). The production of nitrites, used as an indicator of cellular oxidative stress, was significantly decreased (p < 0.01). Gene expression levels compared to the control group increased for COL2A1 (p < 0.01), ACAN (p < 0.05), TIMP-1 and −3 (p < 0.01), while a decrease in
Avascular necrosis (AVN) is a disorder leading to femoral head (FH) destruction, while BMPs are known for their osteogenic ability. In this study we analyzed BMP-2, BMP-4, BMP-6 and BMP-7 expression at the RNA and protein level in the normal and necrotic sites of the FHs. Quantitative RT-PCR for BMP-2,-4,-6,-7 genes was performed in samples from the normal and necrotic sites of 52 FHs with AVN. Protein levels of BMP-2,-4,-6 were estimated by Western Blot analysis. Statistical analysis was performed using the t-test (p<
0.05). BMP-2 and BMP-6
In a recent phase 2 superiority clinical trial we demonstrated that a single dose of 60mg of the human monoclonal antibody denosumab inhibits osteolytic lesion activity in patients undergoing revision total hip arthroplasty (THA), demonstrating proof of biological efficacy for this clinical application. Here, we examined the effect that denosumab has on disease biology at the osteolysis tissue level. Osteolytic tissue taken from the prosthesis-bone lesion interface at revision surgery in patients with osteolysis (n=10 participants that had received a single 60 mg dose of denosumab 8 weeks prior to revision surgery and n=10 that had received placebo) was examined for total genetic message activity and protein levels using whole genome sequencing and mass spectrometry, respectively. The top five upregulated enriched pathways with denosumab treatment included inflammatory response, myeloid cell activation, myeloid leukocyte migration, neutrophil and granulocyte activation (p<6.26 × 10. −28. ). Cell morphogenesis was amongst the most downregulated pathways (p<3.42 ×10. −23. ). Finally, comparison of the trial mRNA and protein data versus mouse single cell RNA sequencing data of the same pathway blockade in mouse tibia showed the same direction of effect, suggesting that giving the drug causes then cells responsible for osteolysis to disperse into a more immature form (128 of 189 genes (z=4.87, P<0.0001) disease and functional pathways at the
Introduction and Objective. Osteonecrosis of the femoral head (ONFH) is an evolving and disabling condition that often leads to subchondral collapse in late stages. It is the underlying diagnosis for approximately 3%–12% of total hip arthroplasties (THAs) and the most frequent aetiology for young patients undergoing THA. To date, the pathophysiological mechanisms underlying ONFH remain poorly understood. In this study, we investigated whether ONFH without an obvious etiological factor is related to impaired osteoblast activities, as compared to age-matched patients with primary OA. Materials and Methods. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head of patients with ONFH and from intertrochanteric region of patients with ONFH or with OA and compared their in vitro mineralisation capacity and secretion of paracrine factors. Results. Compared to patients with OA, osteoblasts obtained from the intertrochanteric region of patients with ONFH showed reduced mineralisation capacity, which further decreased in osteoblasts from the femoral head of the same patient. Lower mineralisation of osteoblasts from patients with ONFH correlated with lower
Cartilage calcification induces the synthesis of degrading enzymes, such as matrix metalloproteinases (MMPs) and prostaglandin E2 leading to tissue degeneration. The aim of the study was to investigate the effect of vitamin D on the calcification process in osteoarthritic cartilage. We evaluated the effect of vitamin D on klotho (KL), Fibroblast Growth Factor 23 (FGF23) and Fibroblast Growth Factor Receptor 1c (FGFR1c) mRNA and protein expression levels by real-time PCR and western blot analysis, respectively. Possible interactions between klotho and FGF23 on the receptor FGFR1c in normal chondrocytes were investigated using immunoprecipitation assay. The direct effect of 1,25 dihydroxyvitamin D3 (1,25D) on KL, FGF23 and FGFR1c promoter was also evaluated. We found that FGF23 and FGFR1c
Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and
Introduction. Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far regulation of these key fate determining TFs has not been studied thoroughly on mRNA and protein level through chondrogenesis of human MSC. To fill this gap in knowledge, we aim to uncover regulation of SOX9, RUNX2/3, MEF2C and other TFs related to hypertrophy during MSC chondrogenesis in vitro and in comparison to the gold standard AC redifferentiation. Methods. Expression of SOX9, RUNX2/3 and MEF2C was compared before and during 6-week chondrogenic re-/differentiation of human MSC and AC on
Periosteum is a specialized connective tissue that surrounds bone, containing progenitor cells that develop into osteoblasts. The osteo-progenitor cells along with growth factors, such as BMPs, play critical role in development, reconstruction and bone formation. Aim: to evaluate the expression of BMPs in human periosteum and in different subrgroups, including different donor sites, gender, and smoking habits. Gene expression of BMPs 2,4,6,7 was performed in 60 periosteal samples using quantitative RT-PCR. Samples were obtained from 32 men/28 women, 22 smokers/38 non-smokers, 29 lower/31 upper extremities. BMP2 gene expression was significantly higher (median: 12.02, p<
0.05) than the
Purpose: Compartment syndrome is a severe complication of skeletal trauma. Intravital microscopy (IVVM) has demonstrated an inflammatory response to compartment syndrome (CS). The molecular mechanisms underlying this inflammatory response are unknown. The purpose of this study was threefold. First, a broad inflammatory cytokine profile was examined to determine the molecules responsible for white cell recruitment. As well, skeletal muscle expression of white cell adhesion molecules including P-Selectin, E-Selectin, Mac-1 and ICAM-1 were examined to assess the extent of white cell activation in target tissues. Finally, skeletal muscle apoptosis was measured to determine the magnitude of cell death. Method: Normal and neutropenic rats were randomised to either compartment syndrome or control groups. CS Animals were treated with 45 minutes of elevated intra-compartmental pressure (EICP) of the hindlimb. Fasciotomy was then performed, followed by 60 minutes of reperfusion. Control animals experienced no EICP. Blood was collected from carotid arterial lines used for pressure monitoring. Skeletal muscle tissue samples were collected from the EDL following reperfusion. Blood samples were obtained from carotid arterial lines and skeletal muscle was collected following reperfusion. A Multiplex assay was used to examine serum levels of 24 proinflammatory cytokines/chemokines. Skeletal muscle
Introduction: Avascular necrosis (AVN) of the femoral head (FH) is a painful disorder of the hip that leads to hip collapse. The pathology of AVN involves ischemic events leading to the death of bone. Several biological substances participate in the balance between osteoclasts and osteoblasts, like osteoprotegerin, RANK and RANKL. The expression of these genes affects the maturation and function of osteoblasts and osteoclasts and determines the rate of bone remodeling. In this study, we investigate the expression of OPG, RANK and RANKL in osteonecrotic FHs derived from 44 patients with AVN. Methods and Materials: RNA and proteins were isolated from both necrotic and normal site of FHs of 44 patients diagnosed with AVN. Quantitative RT-PCR was performed for OPG, RANKL and RANK molecules by using the Light Cycler FastStart DNA Master Hybridization Probes kit (Roche). Western Blotting: 22 bone tissues were run on 4–12% NuPAGE gel (Invitrogen). Anti-OPG, anti-RANKL and anti-actin antibodies were used and membranes were immersed in ECL. Results: Quantitative RT-PCR: The