Modular femoral stems offer surgeons great flexibility in biomechanical configuration during total hip replacement (THR) however introduce a taper-trunnion articulation known to be a source of additional wear debris through crevice, fretting and galvanic corrosion with mixed material combinations. This study aimed to investigate the influence of the
Uncemented metal-on-polyethylene total hip arthroplasties (THAs) have had a modular cobalt-chrome alloy head since their introduction in the early 1980's. Retrieval analysis studies and case reports in the early 1990's first reported corrosion between the femoral stem
Introduction. There have been increased concerns with
Introduction. The release of metallic debris can promote many adverse tissue reactions, as metallosis, necrosis, pseudotumors and osteolysis . 1–3. This debris is mainly generated by the fretting-corrosion mechanism due to the geometric difference in the head-stem interface . 4. Retrieval and in silico analysis showed the roughness of the stem-head interface appears to play an important role in the volume of material lost and THA failure . 5–7. The technical standard ISO 7206-2 recommends the measurement of average roughness (Ra) and max height of the profile (Rz) to control the quality of the surface finish of articulating surfaces on THA implants. However, despite the importance of the
Introduction. The failure rate of Total Hip Replacement (THR) has been shown to be strongly influenced by the nature of the articulating interfaces, with Metal-on-Metal (MoM) articulations having three times the failure rate of Metal-on-Polyethylene (MoP) components. It has been postulated that this observation is related to edge wear and increased bearing torque of large MoM heads, which would lead to increased loading and wear at the head taper junction and, subsequently, to the release of metal ions and corrosion products. This suggests that taper wear and corrosion should not be as prevalent in large head MoP implants as in large head MoM implants. This study was undertaken to test the hypotheses that: (i) MoM implants exhibit higher rates of corrosion and fretting at the head taper junction than MoP implants, and that (ii) the severity of corrosion and fretting is greater in components of larger head diameter. Materials and Methods. Our study included 90 modular implants (41 MoM; 49 MoP) retrieved during revision hip arthroplasties performed between 1992 and 2012. Only retrievals with head diameters greater than 32 mm were included, and
Introduction. The Morse taper was adapted into orthopaedics as a connecting junction in total hip replacements. The benefit of modular systems includes the adjustment of leg length, offset and the ability to remove the head for acetabular exposure during revision surgery. The design of the Morse taper facilitates the intimate contact of the conical
There is renewed concern surrounding the potential for corrosion at the modular head-neck junction to cause early failure in modern hip implants. Although taper corrosion involves a complex interplay of many factors, previous studies have correlated decreasing flexural rigidity of the femoral
Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.Aims
Methods
Introduction:. Angular mismatch of the modular junction between the head and the trunion has been recognized as a contributing factor to fretting and corrosion of hip prostheses. Excessive angular-mismatch can lead to relative motion at the taper interface, and tribo-corrosion of the head-neck junction secondary to disruption of the passive oxide layer. Although manufacturing standards have been adopted to define acceptable tolerances for taper angles of mating components, recent investigations of failed components have suggested that stricter tolerances or changes in taper design may be necessary to avoid clinical failures secondary to excessive taper wear and corrosion. In this study we examine the effect of angular-mismatch on relative motion between the taper and bore subjected to normal gait load using finite element methods. Methods:. Computer simulations were executed using a verified finite element model (FEM), the results from which were determined to be consistent with literature. A stable, converging hexahedral mesh was defined for the
Introduction. Corrosion of the femoral head-trunnion junction in modular hip components has become a concern as the corrosion products may lead to adverse local tissue reactions. A simple way to avoid
It is now well recognised that adverse local tissue reaction (so called pseudotumor or ALTR) may follow the use of metal-on-metal arthroplasty, the source of the metal being the primary bearing surface (the articulation itself) or a modular junction within the construct, such as the
Fracture of contemporary femoral stems is a rare occurrence. Earlier THR stems failed due to design issues or post manufacturing heat treatments that weakened the core metal. Our group identified and analyzed 4 contemporary fractured femoral stems after revision surgery in which electrochemical welds contributed to the failure. All four stems were proximally porous coated titanium alloy components. All failures occurred in the neck region post revision surgery in an acetabular cup exchange. All were men and obese. The fractures occurred at an average of 3.6 years post THR redo (range, 1.0–6.5 years) and 8.3 years post index surgery (range, 5.5–12.0 years). To demonstrate the effect of electrocautery on retained femoral stems following revision surgery, we applied intermittent electrosurgical currents at three intensities (30, 60, 90 watts) to the polished neck surface of a titanium alloy stem under dry conditions. At all power settings, visible discoloration and damage to the polished neck surface was observed. The localized patterns and altered metal surface features exhibited were like the electrosurgically-induced damage priorly reported. The neck regions of all components studied displayed extensive mechanical and/or electrocautery damage in the area of fracture initiation. The use of mechanical instruments and electrocautery was documented to remove tissues in all 4 cases. The combination of mechanical and electrocautery damage to the femoral neck and stem served as an initiation point and stress riser for subsequent fractures. The electrocautery and mechanical damage across the fracture site observed occurred iatrogenically during revision surgery. The notch effect, particularly in titanium alloys, due to mechanical and/or electrocautery damage, further reduced the fatigue strength at the fractured femoral necks. While electrocautery and mechanical dissection is often required during revision THA, these failures highlight the need for caution during this step of the procedure in cases where the femoral stem is retained.
Introduction. Corrosion products from modular taper junctions are a potent source of adverse tissue reactions after THR. In an attempt to increase the area of contact and resistance to interface motion in the face of taper mismatches, neck
Aims. The aim of this study was to compare the design of the generic
OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods. We obtained five boxed, as manufactured, implants of both designs
at random (ten in total). Two examiners were blinded to the implant
design and independently measured the mass, volume,
Taper corrosion and fretting have been associated with oxide layer abrasion and fluid ingress that contributes to adverse local tissue reactions with potential failure of the hip joint replacement. [1,2]. Both mechanisms are considered to be affected by the precise nature of the taper design. [3]. Indeed relative motion at the taper interface that causes fretting damage and wear effects, such as pistoning and rocking, have been described following analysis of implants at retrieval. [4,5]. However, there is much less reported about the mechanisms that allow the fluid ingress/egress at the taper interface which would drive corrosion. Thus the aim of the present study was to investigate the effect of
Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the
INTRODUCTION. In theory, Finite Element Analysis (FEA) is an attractive method for elucidating the mechanics of modular implant junctions, including variations in materials, designs, and modes of loading. However, the credence of any computational model can only be established through validation using experimental data. In this study we examine the validity of such a simulation validated by comparing values of interface motion predicted using FEA with values measured during experimental simulation of stair-climbing. MATERIALS and METHODS. Two finite element models (FEM) of a modular implant assembly were created for use in this study, consisting of a 36mm CoCr femoral head attached to a TiAlV rod with a 14/12
Introduction. Modern hip replacements all have encapsulated the design concept of proximal modularity. The factors contributing to the increased wear and corrosion at the taper junction are
Several implants have a proven track record of durability and function in patients over many years. As manufacturers' patents expire it is understandable that cheaper generic copies would be considered. There is currently no established, independent method of determining design equivalence between generic and branded orthopaedic implants. We acquired 10 boxed, as manufactured components consisting of the generic OptiStem XTR model (n=5) and branded Exeter (n=5) femoral stems. Two examiners were blinded to the implant design and independently measured the mass, volume,