Competitive dancers represent a unique patient population in the setting of hip arthroplasty given the high degree of hip strength and mobility required by their profession. We sought to determine the clinical outcomes and ability to return to competitive dance after total hip arthroplasty (THA) or hip resurfacing arthroplasty (HRA) among competitive dancers. Active competitive dancers who underwent primary THA or HRA at a single institution with minimum one-year follow-up were included in the study. Primary outcomes included (1) the rate of return to competitive dance, (2) three PROMs (modified Harris Hip Score [mHHS], Hip Disability and Osteoarthritis Outcome Score for Joint Replacement [HOOS-JR], and Lower Extremity Activity Scale [LEAS]), and (3) post-operative complications. Forty-nine hips in 39 patients (mean age 56±13 years; 80% female) were included. Mean follow-up was 4.9±5.1 years. Thirty-seven THAs and 12 HRAs were performed. Ninety-six percent of patients returned to competitive dance activities post-operatively. With respect to PROMs, there were statistically significant improvements in mHHS, HOOS-JR, and LEAS from baseline to ≥ 1 year post-operatively. There were complications in 9/49 (18%) hips post-operatively, five (10%) of which required revision surgery. Active competitive dancers experienced significant improvements in functional outcome scores after THA or HRA, with a rate of return to competitive dance of 96%.
The purpose of this multicenter, randomized clinical trial was to determine the optimal dosing regimen of tranexamic acid (TXA) to minimize perioperative blood loss for revision total hip arthroplasty (THA). Six centers prospectively randomized 155 revisions to one of four regimens: 1g of intravenous (IV) TXA prior to incision, a double dose regimen of 1g IV TXA prior to incision and 1g IV TXA during wound closure, a combination of 1g IV TXA prior to incision and 1g intraoperative topical TXA, or three doses of 1950mg oral TXA administered 2 hours preoperatively, 6 hours postoperatively, and on the morning of postoperative day one. Randomization was based upon revision subgroups to ensure equivalent group distribution, including: femur only, acetabulum only, both component, explant/spacer, and second stage reimplantation. Patients undergoing an isolated modular exchange were excluded. An Background
Methods
MDM implants can enhance stability in total hip replacement (THR), but complications include malseated liners and corrosion between the cobalt-chrome liner and titanium acetabular shell increased systemic metal ion levels. The liner-shell junction has the potential for fretting corrosion, and the corrosion could be exacerbated in malseated liners. We determined the potential for fretting corrosion in malseated versus well-seated liners using a mechanical electrochemical corrosion chamber. Four pristine MDM liners and shells were tested. Two liners were well-seated into their shells; two were canted at 6°. The liner-shell couples were assembled with a 2kN force after wetting the surfaces to promote a crevice environment conducive to corrosion. Couples were fixed in an electrochemical chamber at 40° inclination/20° anteversion to the load axis. The chamber was filled with phosphate buffered saline and setup as a three-electrode configuration: the shell as the working, a saturated calomel electrode as the reference, and a carbon rod as the counter electrode. A potentiostat held the system at −50mV throughout testing. After equilibration, couples underwent cyclic loading of increasing magnitudes from 100 to 3400N at 3 Hz. Fretting current was measured throughout, and the onset load for fretting was determined from the increase in average current.Introduction
Methods
Enhanced stability using dual mobility has been demonstrated but concerns about potential for corrosion in modular versions have been raised. Case reports of corrosion with malseated inserts have heightened concerns over this modularity. Some have claimed that malseating is rare, the true frequency is unknown. The purpose of our investigation was to determine the incidence of liner malseating in dual mobility implants at our institution. 567 hips had primary modular dual mobility hip replacements (Biomet or Stryker) between 2016 and 2018. Post-operative radiographs were reviewed independently by two reviewers to identify malseating. Liners were considered malseated if there was a noticeable gap between the metal liner and acetabular shell(figure 1). All liners deemed to be malseated were independently assessed by 3 separate reviewers for confirmation.Introduction
Methods
Failure of metal on metal (MOM) total hip arthroplasty (THA) and resurfacing arthroplasty (HRA) due to development of adverse local tissue reaction (ALTRs) is a significant problem. The prevalence of ALTRs in asymptomatic MOM arthroplasty patients is highly variable. The purpose of this prospective, longitudinal study was to: 1) determine MRI ALTR prevalence in patients with HRA; 2) determine if patients with HRA have a greater rate of MRI ALTRs compared to control patients with ceramic on poly (COP) THA; and 3) evaluate changes in patient reported outcomes between these implant designs. Following IRB approval with informed consent, self-reported asymptomatic primary COP and HRA patients greater than one year post arthroplasty were evaluated with 4 annual (TP1–4) MRIs using a standardized protocol and serum ion level testing. Morphologic and susceptibility reduced images were acquired for each hip and evaluated for synovial thickness, volume, capsule dehiscence and the presence of ALTR. Patient reported outcomes were evaluated by Hip Disability and Osteoarthritis Outcome Scores (HOOS). Analyses were performed to detect differences of synovial thickness and volume, and HOOS subgroups between and within bearing surfaces at each time point and over time, and to compare the time to and the risk of developing MRI ALTR. Analyses were adjusted for age, gender, and length of implantation.Introduction
Methods
Hip and knee replacements are being performed at increasing rates and currently account for one of the largest procedure expenditures in the Medicare budget. Outcomes of total knee replacement (TKR) depend on surgeon, patient and implant factors. The impact that the specific implants might have on patient-reported outcomes is unknown. The primary purpose of this study was to evaluate the patient-reported functional outcomes and satisfaction after primary total knee arthroplasty in patients with osteoarthritis who underwent TKR using five different brands of posterior-stabilized implants. Specifically, the aim was to evaluate for any difference in patient-reported outcomes based on implant brand used. The hypothesis was that there would be no difference in functional outcome that could be attributed to the implant used in primary TKR. Using our institution's total joint arthroplasty registry, we identified 4,135 patients who underwent total knee replacement (TKR) using one of the five most common implant brands used at our institution. These included Biomet Vanguard (N=211 patients), Depuy/Johnson&Johnson Sigma (N=221), Exactech OptetrakLogic (N=1,507), Smith & Nephew Genesis II (N=1,414), and Zimmer NexGen (N=779). Only posterior-stabilized primary TKRs in patients with osteoarthritis were included. Patients were evaluated preoperatively using the Knee Osteoarthritis Outcomes Score (KOOS), Lower Extremity Activity Scale (LEAS), and Short Form-12 (SF-12). Demographics including age, body mass index (BMI), Charleston Comorbidity Index (CCI), ASA physical status classification, sex, and smoking status were collected. Postoperatively, 2-year KOOS, LEAS, SF-12, and satisfaction scores were compared between implant groups.Introduction
Methods
Tranexamic acid (TXA) is proven to reduce blood loss following total knee arthroplasty (TKA), but there are limited data on the impact of similar dosing regimens in revision TKA that is associated with greater blood loss. The purpose of this multi-center randomized trial was to determine the optimal regimen to maximize the blood-sparing properties of TXA in revision TKA. 233 Septic and aseptic revision TKA from six-centers were randomized to either receive 1g pre-incision intravenous (IV) TXA, 1g pre- and post-incision IV TXA, 1g pre-incision IV and 1g intra-operative topical TXA, or three doses of 1950mg oral TXA given 2 hours pre-operatively, 6 hours post-operatively, and the morning of postoperative day 1. Randomization was performed based on type of revision to ensure equivalent distribution among groups. The primary outcome was reduction in hemoglobin. Power analysis determined 40 patients per group were necessary to identify a 1g/dL difference with an alpha of 0.05 and beta of 0.80. Per-protocol analysis involved regression analysis and two one-sided t-tests for equivalence.Introduction
Methods
Acetabular component position is considered a major factor affecting the etiology of hip dislocation. The ‘Lewinnek safe zone’ has been the most widely accepted range for component position to avoid hip dislocation, but recent studies suggest that this safe zone is outdated. We used a large prospective institutional registry to ask: 1) is there a ‘safe zone’ for acetabular component position, as measured on an anteroposterior radiograph, within which the risk of hip dislocation is low?, and 2) do other patient and implant factors affect the risk of hip dislocation? From 2007 to 2012, 19,449 patients (22,097 hip procedures) were recorded in an IRB approved prospective total joint replacement registry. All patients who underwent primary THA were prospectively enrolled, of which 9,107 patients consented to participate in the registry. An adverse event survey (80% compliance) was used to identify patients who reported a dislocation event in the six months after hip replacement surgery. Postoperative AP radiographs of hips that dislocated were matched with AP radiographs of stable hips, and acetabular position was measured using Ein Bild Röntgen Analyse software. Dislocators in radiographic zones (± 5°, ± 10°, ± 15° boundaries) were counted for every 1° of anteversion and inclination angles.Introduction
Materials and Methods
Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized zirconium metal (Oxinium®, Smith & Nephew) was developed to reduce the amount of polyethylene wear as compared to cobalt chromium femoral heads, without the risk of brittle fracture seen with older generation ceramics. There are a limited number of retrieval studies evaluating the performance of Oxinium in THA. The aims of this study were 1) to visually assess damage on the surface of a large number of retrieved Oxinium femoral heads, 2) to measure surface roughness of scratches on the surfaces of Oxinium femoral heads, and 3) to use scanning electron microscopy (SEM) to assess the integrity of the oxidized zirconium surface in damaged areas. BIOLOX From 2006 to 2013, 59 retrieved Oxinium femoral heads in THAs were collected after an average time to revision surgery of 1.64 years. The mean patient age was 61.9 years, with 32 males and 27 females. Reasons for revision surgery were recurrent dislocation (24), femoral component loosening or subsidence (13), infection (9), acetabular loosening (4), periprosthethic fracture (4), acetabular malposition (2), heterotopic ossification (2), and 1 case of leg length discrepancy. The diameters of the femoral heads were 28 mm (9), 32 mm (22), 36mm (26) and 40mm (2). Three observers visually graded surface damage on all femoral heads according to the following criteria: 1) no scratches, 2) minimal damage with one to two scratches, 3) significant damage with multiple scratches. We measured the surface roughness of retrieved Oxinium and BIOLOX Introduction
Methods
Concerns remain regarding both the toughness of alumina, and stability of zirconia ceramics in total hip arthroplasty (THA). A zirconia-toughened alumina (ZTA) bearing has been introduced, in which yttria-stabilized, zirconia polycrystals are uniformly distributed in an alumina matrix. The goal is to combine the wear resistance of alumina with the toughness of zirconia. Zirconia's toughness is attributed to a tetragonal to monoclinic (t-m) phase transformation that occurs in response to a crack, hindering its propagation; however, it might decrease material stability. The purposes of this study were to investigate the degree and position of metal transfer, and the occurrence of t-m phase transformation using Raman spectroscopy, in a series of retrieved, ZTA femoral heads. Twenty-seven ZTA femoral heads were reviewed as part of an IRB-approved implant retrieval program. All acetabular liners were composed of highly cross-linked polyethylene. The length of implantation, age, body mass index (BMI), sex, and reason for revision were recorded. Two independent graders assessed each femoral head for metal transfer over three regions (apex, equator, and below equator), using a previously validated grading system (Figure 1). The female trunnion of each head was graded in two regions: the deep and superficial 50% (Figure 2). Raman spectra were collected with a confocal Raman imaging system (alpha300 R, WITec, Knoxville, TN) operating a 488 nm laser, using a microscope objective of 20X. Three scans were taken in each of the aforementioned regions of the femoral head surface. Scans were also performed in regions of visible wear or metal transfer. Interobserver correlation coefficients for the measurement of metal transfer between the two graders were determined. One-way ANOVAs were used to compare differences of metal transfer between the 3 surface regions (p < 0.05 = significant).Introduction:
Materials and Methods:
Acetabular component orientation has been linked to hip stability as well as bearing mechanics such as wear. Previous studies have demonstrated wide variations of cup placement in hip arthroplasty using conventional implantation techniques which rely upon either anatomic landmarks or the use of commercial positioning guides. Enabling technologies such as navigation have been used to improve precision and accuracy. Newer technologies such as robotic guidance have been postulated to further improve accuracy. The goal of our study was to evaluate the clinical reproducibility of a consecutive series of haptically guided THR. 119 patients at 4 centers were enrolled. All patients had preoperative CT scans for the purpose of planning cup placement in lateral opening and version using proprietary software (Mako, Ft. Lauderdale, FL). All procedures were performed using a posterolateral approach. Following bone registration, acetabular preparation and component position is performed using haptic guidance. Final implant postion is ascertained by obtaining 5 points about the rim of the acetabular component and recorded. At 6 weeks, all patients had AP and cross-table lateral radiographs which were then analyzed for cup abduction and anteversion using the Hip Analysis Suite software. The goal was to determine the variability between desired preoperative plan, intraoperative measurement and postoperative results.Introduction:
Methods:
Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based robotic surgery system has been developed (MAKO™ Robotic Arm Interactive Orthopaedic System, MAKO Surgical Corp., Fort Lauderdale, FLA, USA), with promising improvements in component alignment and surgical precision. The purpose of this study was to compare the accuracy in predicting the postoperative acetabular component position between the MAKO™ robotic navigation system and an imageless, CAS system (AchieveCAS, Smith and Nephew Inc., Memphis, TN, USA). 30 THAs performed using the robotic navigation system (robotic cohort) were available for review, and compared to the most recent 30 THAs performed using the imageless, CAS system (CAS cohort). The final, intraoperative reading for acetabular abduction and anteversion provided by each navigation system was recorded following each THA. Einsel-Bild-Roentgen analysis was used to measure the acetabular component abduction and anteversion based on anteroposterior pelvis radiographs obtained at each patient's first, postoperative visit (Figure 1). Two observers, blinded to the treatment arms, independently measured all the acetabular components, and the results were assessed for inter-observer reliability. Comparing the difference between the final, intraoperative reading for both acetabular abduction and anteversion, and the radiographic alignment calculated using EBRA analysis, allowed assessment of the intraoperative predictive capability of each system, and accuracy in determining the postoperative acetabular component position. In addition, the number of acetabular components outside of the “safe zone” (40° + 10° of abduction, 15° + 10° of anteversion), as described by Lewinnek et al., was assessed. Lastly, the operative time for each surgery was recorded.Background:
Materials and Methods:
Large diameter metal on metal total hip arthroplasty (MOM THA) have shorter lengths of implantation due to increased failure caused by wear either at the articulating surface as well as the taper-trunnion interface. Taper-trunnion wear may be worse in large diameter MOM THA due the increased torque at the taper-trunnion interface. However little has been done to understand how differences in taper-trunnion geometry and trunnion engagement effects wear. The purpose of this study was to (1) measure the differences in taper geometry and trunnion engagement on the head-taper of 11/13, 12/14, and Type 1 taper designs and (2) to determine if taper geometry affects fretting, corrosion, and wear at the taper interface. We identified 54 MOM THA primary revision implants with head diameters greater than 36 mm from our retrieval archive. Patients' charts were queried for demographic information and pre-revision radiographs were measured for cup inclination and cup anteversion. To measure taper geometry and wear the head tapers were imaged using Redlux©. The point clouds obtained from this were analyzed in Geomagic©. Taper angles and contact length where the trunnion engaged with the female taper of the head-tapers were measured. The diameter of the taper at the most distal visual area of trunnion engagement was also measured. Best fit cones were fit to the unworn regions to approximate the pristine surface. Differences between the raw data and the unworn surface were measured and volumetric wear rates were calculated. Fretting and corrosion of the head-taper was graded using the Goldberg Scoring.Introduction:
Methods:
Total hip arthroplasty (THA) is regarded as one of the most successful surgeries in medicine. However, recent studies have revealed that ideal acetabular cup implantation is achieved less frequently than previously thought, as little as 50% of the time. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. This study reports accuracy of a tactile robotic arm system to ream the acetabulum and impact an acetabulur cup compared to manual instrumentation. 12 fresh frozen cadaveric acetabulae were pre-operatively CT scanned and 3D templating was used to plan the center of rotation, and anteversion and inclination of the cup. Each specimen received THA, six prepared manually and six prepared with robotic arm guidance. Tactile, visual, and auditory feedback was provided through robotic guidance as well as navigated guided reaming and cup impaction. The robotic guidance constrained orientation of instruments thus constraining anteversion, inclination, and center of rotation for reaming, trialing, and final cup impaction. Post-operative CT scans were taken of each specimen to determine final cup placement for comparison to the pre-operative plans.INTRODUCTION
METHODS