Advertisement for orthosearch.org.uk
Results 1 - 50 of 619
Results per page:
Bone & Joint Open
Vol. 6, Issue 1 | Pages 26 - 34
6 Jan 2025
Findeisen S Mennerat L Ferbert T Helbig L Bewersdorf TN Großner T Schamberger C Schmidmaier G Tanner M

Aims. The aim of this study was to evaluate the radiological outcome of patients with large bone defects in the femur and tibia who were treated according to the guidelines of the diamond concept in our department (Centre for Orthopedics, Trauma Surgery, and Paraplegiology). Methods. The following retrospective, descriptive analysis consists of patients treated in our department between January 2010 and December 2021. In total, 628 patients were registered, of whom 108 presented with a large-sized defect (≥ 5 cm). A total of 70 patients met the inclusion criteria. The primary endpoint was radiological consolidation of nonunions after one and two years via a modified Lane-Sandhu Score, including only radiological parameters. Results. The mean defect size was 6.77 cm (SD 1.86), with the largest defect being 12.6 cm. Within two years after surgical treatment, 45 patients (64.3%) presented consolidation of the previous nonunion. After one year, six patients (8.6%) showed complete consolidation and 23 patients (32.9%) showed a considerable callus formation, whereas 41 patients (58.6%) showed a Lane-Sandhu score of 2 or below. Two years after surgery, 24 patients (34.3%) were categorized as Lane-Sandhu score 4, another 23 patients (32.9%) reached a score of 3, while 14 patients (20.0%) remained without final consolidation (score ≤ 2). A total of nine patients (12.9%) missed the two-year follow-up. The mean follow-up was 44.40 months (SD 32.00). The mean time period from nonunion surgery to consolidation was 16.42 months (SD 9.73). Conclusion. Patients with presentation of a large-sized nonunion require a structured and sufficiently long follow-up to secure the consolidation of the former nonunion. Furthermore, a follow-up of at least two years is required in order to declare a nonunion as consolidated, given that a significant part of the nonunions declared as not consolidated at one year showed consolidation within the second year. Moreover, the proven “gold standard” of a two-step procedure, so called Masquelet technique, shows effectiveness. Cite this article: Bone Jt Open 2024;6(1):26–34


Aims

The Peri-Implant and PeriProsthetic Survival AnalysiS (PIPPAS) study aimed to investigate the risk factors for one-year mortality of femoral peri-implant fractures (FPIFs).

Methods

This prospective, multicentre, observational study involved 440 FPIF patients with a minimum one-year follow-up. Data on demographics, clinical features, fracture characteristics, management, and mortality rates were collected and analyzed using both univariate and multivariate analyses. FPIF patients were elderly (median age 87 years (IQR 81 to 92)), mostly female (82.5%, n = 363), and frail: median clinical frailty scale 6 (IQR 4 to 7), median Pfeiffer 4 (1 to 7), median age-adjusted Charlson Comorbidity Index (CCI) 6 (IQR 5 to 7), and 58.9% (n = 250) were American Society of Anesthesiologists grade III.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up. Results. At three months, subsidence of the short stem -0.87 mm (95% confidence interval (CI) -1.07 to -0.67) was lower compared to the standard stem -1.59 mm (95% CI -1.82 to -1.36; p < 0.001). Both stems continued a similar pattern of subsidence until five-year follow-up. At five-year follow-up, the short stem had subsided mean -1.67 mm (95% CI -1.98 to -1.36) compared to mean -2.67 mm (95% CI -3.03 to -2.32) for the standard stem (p < 0.001). Subsidence was not influenced by preoperative bone quality (osteopenia vs normal) or cement mantle thickness. Conclusion. The standard Exeter stem had more early subsidence compared with the short Exeter stem in patients with Dorr type A femora, but thereafter a similar migration pattern of subsidence until minimum five years follow-up. Both the standard and the short Exeter stems subside. The standard stem subsides more compared to the short stem in Dorr type A femurs. Subsidence of the Exeter stems was not affected by cement mantle thickness. Cite this article: Bone Jt Open 2023;4(7):507–515


Bone & Joint Research
Vol. 11, Issue 2 | Pages 102 - 111
1 Feb 2022
Jung C Cha Y Yoon HS Park CH Yoo J Kim J Jeon Y

Aims

In this study, we aimed to explore surgical variations in the Femoral Neck System (FNS) used for stable fixation of Pauwels type III femoral neck fractures.

Methods

Finite element models were established with surgical variations in the distance between the implant tip and subchondral bone, the gap between the plate and lateral femoral cortex, and inferior implant positioning. The models were subjected to physiological load.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 430 - 439
1 Jun 2018
Eggermont F Derikx LC Verdonschot N van der Geest ICM de Jong MAA Snyers A van der Linden YM Tanck E

Objectives. In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. Methods. A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians. Results. In institute 1, median failure load was significantly lower for patients who sustained a fracture than for patients with no fractures. In institutes 2 and 3, the number of patients with a fracture was too low to make a clear distinction. Fracture locations were well predicted by the FE model when compared with post-fracture radiographs. The FE model was more accurate in identifying patients with a high fracture risk compared with experienced clinicians, with a sensitivity of 89% versus 0% to 33% for clinical assessments. Specificity was 79% for the FE models versus 84% to 95% for clinical assessments. Conclusion. FE models can be a valuable tool to improve clinical fracture risk predictions in metastatic bone disease. Future work in a larger patient population should confirm the higher predictive power of FE models compared with current clinical guidelines. Cite this article: F. Eggermont, L. C. Derikx, N. Verdonschot, I. C. M. van der Geest, M. A. A. de Jong, A. Snyers, Y. M. van der Linden, E. Tanck. Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians? Towards computational modelling in daily clinical practice. Bone Joint Res 2018;7:430–439. DOI: 10.1302/2046-3758.76.BJR-2017-0325.R2


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives. Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. Methods. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use. Results. Six broad themes relating to the pathogenesis and management of bisphosphonate-related AFFs are presented. The key themes in fracture pathogenesis are: bone microdamage accumulation; altered bone mineralisation and altered collagen formation. The key themes in fracture management are: medical therapy and surgical therapy. In addition, primary prevention strategies for AFFs are discussed. Conclusions. This article presents current knowledge about the relationship between bisphosphonates and the development of AFFs, and highlights key areas for future research. In particular, studies aimed at identifying at-risk subpopulations and organising surveillance for those on long-term therapy will be crucial in both increasing our understanding of the condition, and improving population outcomes. Cite this article: N. Kharwadkar, B. Mayne, J. E. Lawrence, V. Khanduja. Bisphosphonates and atypical subtrochanteric fractures of the femur. Bone Joint Res 2017;6:144–153. DOI: 10.1302/2046-3758.63.BJR-2016-0125.R1


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective. In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations. Methods. In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation. . Results. The standard deviation (. sd. ) of the mean paired difference in fixation stability increased from 2 mm in donor pairs to 5 mm in BMD-matched pairs. Intra-pair correlation was 0.953 (Pearson’s r) in donor pairs and non-significant at -0.134 (Pearson’s r) in BMD-matched pairs. Required sample size to achieve a statistical power of 0.8 increased from ten pairs using donor pairs to 54 pairs using BMD-matched pairs. Conclusion. BMD cannot be used to create comparable test groups unless sample size is increased substantially and paired statistics are no longer valid. Cite this article: Bone Joint Res 2014;3:317–20


Bone & Joint Research
Vol. 9, Issue 6 | Pages 282 - 284
1 Jun 2020
Clement ND Calliess T Christen B Deehan DJ


Bone & Joint Research
Vol. 4, Issue 2 | Pages 17 - 22
1 Feb 2015
Vo A Beaule PE Sampaio ML Rotaru C Rakhra KS

Objectives

The purpose of this study was to investigate whether the femoral head–neck contour, characterised by the alpha angle, varies with the stage of physeal maturation using MRI evaluation of an asymptomatic paediatric population.

Methods

Paediatric volunteers with asymptomatic hips were recruited to undergo MRI of both hips. Femoral head physes were graded from 1 (completely open) to 6 (completely fused). The femoral head–neck contour was evaluated using the alpha angle, measured at the 3:00 (anterior) and 1:30 (anterosuperior) positions and correlated with physeal grade, with gender sub-analysis performed.


Objectives. The annual incidence of hip fracture is 620 000 in the European Union. The cost of this clinical problem has been estimated at 1.75 million disability-adjusted life years lost, equating to 1.4% of the total healthcare burden in established market economies. Recent guidance from The National Institute for Health and Clinical Excellence (NICE) states that research into the clinical and cost effectiveness of total hip arthroplasty (THA) as a treatment for hip fracture is a priority. We asked the question: can a trial investigating THA for hip fracture currently be delivered in the NHS?. Methods. We performed a contemporaneous process evaluation that provides a context for the interpretation of the findings of WHiTE Two – a randomised study of THA for hip fracture. We developed a mixed methods approach to situate the trial centre within the context of wider United Kingdom clinical practice. We focused on fidelity, implementation, acceptability and feasibility of both the trial processes and interventions to stakeholder groups, such as healthcare providers and patients. Results. We have shown that patients are willing to participate in this type of research and that surgeons value being part of a team that has a strong research ethos. However, surgical practice does not currently reflect NICE guidance. Current models of service delivery for hip fractures are unlikely to be able to provide timely total hip arthroplasty for suitable patients. Conclusions. Further observational research should be conducted to define the population of interest before future interventional studies are performed. Cite this article: C. Huxley, J. Achten, M. L. Costa, F. Griffiths, X. L. Griffin. A process evaluation of the WHiTE Two trial comparing total hip arthroplasty with and without dual mobility component in the treatment of displaced intracapsular fractures of the proximal femur: Can a trial investigating total hip arthroplasty for hip fracture be delivered in the NHS? Bone Joint Res 2016;5:444–452. DOI: 10.1302/2046-3758.510.BJR-2015-0008.R1


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 840 - 845
1 Jun 2016
Chesser TJS Fox R Harding K Halliday R Barnfield S Willett K Lamb S Yau C Javaid MK Gray AC Young J Taylor H Shah K Greenwood R

Aims

We wished to assess the feasibility of a future randomised controlled trial of parathyroid hormone (PTH) supplements to aid healing of trochanteric fractures of the hip, by an open label prospective feasibility and pilot study with a nested qualitative sub study. This aimed to inform the design of a future powered study comparing the functional recovery after trochanteric hip fracture in patients undergoing standard care, versus those who undergo administration of subcutaneous injection of PTH for six weeks.

Patients and Methods

We undertook a pilot study comparing the functional recovery after trochanteric hip fracture in patients 60 years or older, admitted with a trochanteric hip fracture, and potentially eligible to be randomised to either standard care or the administration of subcutaneous PTH for six weeks. Our desired outcomes were functional testing and measures to assess the feasibility and acceptability of the study.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims. Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD. Methods. A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively. Results. We detected five, three, and seven candidate gut microbiota-related traits for L1-L4 BMD, total BMD, and femur BMD, respectively, such as genus Dialister (p = 0.004) for L1-L4 BMD, and genus Eisenbergiella (p = 0.046) for total BMD. We also detected two common gut microbiota-related traits shared by L1-L4 BMD, total BMD, and femur total BMD, including genus Escherichia Shigella and genus Lactococcus. Interaction analysis of BMD detected several genes that interacted with gut microbiota, such as phospholipase D1 (PLD1) and endomucin (EMCN) interacting with genus Dialister in total BMD, and COL12A1 and Discs Large MAGUK Scaffold Protein 2 (DLG2) interacting with genus Lactococcus in femur BMD. Conclusion. Our results suggest associations between gut microbiota and BMD, which will be helpful to further explore the regulation mechanism and intervention gut microbiota of BMD. Cite this article: Bone Joint Res 2021;10(11):734–741


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims. This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. Methods. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018. Results. Of the surviving 30 patients (34 THAs), there were four periprosthetic fractures: one underwent femoral revision after 21 years, two had surgical fixation as the stem was deemed stable, and one was treated nonoperatively due to the patient’s comorbidities. The periprosthetic fracture patients showed radiological evidence of change in bone stock around the femoral stem, which may have contributed to the fractures; this was reflected in change of the canal flare index at the proximal femur. Two patients (two hips) were lost to follow-up. Using aseptic loosening as the endpoint, 16 patients (18 hips; 48%) needed acetabular revision. None of the femoral components were revised for aseptic loosening, demonstrating 100% survival. The estimate of the cumulative proportion surviving for revisions due to any cause was 0.97 (standard error 0.03). Conclusion. In young patients with high demands, the Furlong HAC-coated femoral component gives excellent long-term results. Cite this article: Bone Jt Open 2024;5(4):286–293


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1067 - 1071
2 Dec 2024
Salzmann M Kropp E Prill R Ramadanov N Adriani M Becker R

Aims. The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. Methods. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability. Results. The external rotation of the DCL to the sTEA was a mean of 9.47° (SD 3.06°), and a median of 9.2° (IQR 7.45° to 11.60°), with a minimum value of 1.7° and maximum of 16.3°. The measurements of the DCL demonstrated very good to excellent test-retest and inter-rater reliability coefficients (intraclass correlation coefficient 0.80 to 0.99). Conclusion. This study reveals a correlation between the sTEA and the DCL. Overall, 10° of external rotation of the dorsal femoral cortical bone to the sTEA may serve as a reliable landmark for initial position of the femoral component. Surgeons should be aware that there are outliers in this study in up to 17% of the measurements, which potentially could result in deviations of femoral component rotation. Cite this article: Bone Jt Open 2024;5(12):1067–1071


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results. Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion. These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients. Cite this article: Bone Joint Res 2023;12(10):657–666


Aims. For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis. Methods. We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan. Results. Postoperative pathological assessment revealed a negative surgical margin was achieved in all patients. At final follow-up, 13.3% (2/15) died and no recurrence occurred. The overall survival was 81.7% at five years. None of the patients showed any signs of aseptic loosening, and no wound healing issues were observed. In total, 20% (3/15) developed complications, with two cases of early hip dislocation and one case of deep infection. The cumulative incidence of mechanical and non-mechanical failure in this series was 13.7% and 9.3%, respectively, at five years. In this cohort, the mean time to full weightbearing was 5.89 (SD 0.92) weeks and the mean Musculoskeletal Tumor Society score was 24.1 (SD 4.4). Conclusion. For patients with a hip joint tumour who met the inclusion criteria and were deemed suitable for posterior column preservation, a custom-made osteotomy guide combined with 3D-printed endoprosthesis is worth performing when treating patients who require extra-articular resection of the hip joint, as it can achieve adequate margin for local control, maximize bone preservation to maintain pelvic ring integrity, reduce the risk of complications by simplifying the surgical procedure, and allow for more precise reconstruction for better function. Cite this article: Bone Jt Open 2024;5(11):1027–1036


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims. This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry. Methods. In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups. Results. The incidences of whole and lower LL asymmetries were 40%, 62.5%, 66.7%, and 26.1%, and 21.7%, 20.8%, 55.6%, and 8.7% in the Crowe I, II/III, and IV, and PHOA groups, respectively. The incidence of tibial length asymmetry was significantly higher in the Crowe IV group (44.4%) than that in the PHOA group (4.4%). In all, 50% of patients with DDH-OA with femoral length GT and LT asymmetries had lower LL asymmetry, and 75% had whole LL asymmetry. The incidences of lower and whole LL asymmetries were 20% and 42.9%, respectively, even in the absence of femoral length GT and LT asymmetries. Conclusion. Overall, 43% of patients with unilateral DDH-OA without femoral length asymmetry had whole LL asymmetry of ≥ 5 mm. Thus, both the femur length and whole LL should be measured to accurately assess LL discrepancy in patients with unilateral DDH-OA. Cite this article: Bone Jt Open 2024;5(2):79–86


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


Bone & Joint Open
Vol. 2, Issue 11 | Pages 921 - 925
9 Nov 2021
Limberg AK Wyles CC Taunton MJ Hanssen AD Pagnano MW Abdel MP

Aims. Varus-valgus constrained (VVC) devices are typically used in revision settings, often with stems to mitigate the risk of aseptic loosening. However, in at least one system, the VVC insert is compatible with the primary posterior-stabilized (PS) femoral component, which may be an option in complex primary situations. We sought to determine the implant survivorship, radiological and clinical outcomes, and complications when this VVC insert was coupled with a PS femur without stems in complex primary total knee arthroplasties (TKAs). Methods. Through our institution’s total joint registry, we identified 113 primary TKAs (103 patients) performed between 2007 and 2017 in which a VVC insert was coupled with a standard cemented PS femur without stems. Mean age was 68 years (SD 10), mean BMI was 32 kg/m. 2. (SD 7), and 59 patients (50%) were male. Mean follow-up was four years (2 to 10). Results. The five-year survivorship free from aseptic loosening was 100%. The five-year survivorship free from any revision was 99%, with the only revision performed for infection. The five-year survivorship free from reoperation was 93%. The most common reoperation was treatment for infection (n = 4; 4%), followed by manipulation under anaesthesia (MUA; n = 2; 2%). Survivorship free from any complication at five years was 90%, with superficial wound infection as the most frequent (n = 4; 4%). At most recent follow-up, two TKAs had non-progressive radiolucent lines about both the tibial and femoral components. Knee Society Scores improved from 53 preoperatively to 88 at latest follow-up (p < 0.001). Conclusion. For complex primary TKA in occasional situations, coupling a VVC insert with a standard PS femur without stems proved reliable and durable at five years. Longer-term follow-up is required before recommending this technique more broadly. Cite this article: Bone Jt Open 2021;2(11):921–925


Bone & Joint Research
Vol. 12, Issue 9 | Pages 546 - 558
12 Sep 2023
Shen J Wei Z Wang S Wang X Lin W Liu L Wang G

Aims. This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. Methods. A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data. Results. After the screening, 44 studies were included with 1,079 patients and 1,083 segments of infected bone defects treated with the induced membrane technique. The mean defect size was 6.8 cm (0.5 to 30). After the index second stage procedure, 85% (797/942) of segments achieved union, and 92% (999/1,083) of segments achieved final healing. The multivariate analysis with data from 296 patients suggested that older age was associated with higher nonunion risk. Patients with external fixation in the second stage had a significantly higher risk of developing nonunion, increasing the need for additional procedures. The autografts harvested from the femur reamer-irrigator-aspirator increased nonunion, infection recurrence, and additional procedure rates. Conclusion. The induced membrane technique is an effective technique for treating infected bone defects. Internal fixation during the second stage might effectively promote bone healing and reduce additional procedures without increasing infection recurrence. Future studies should standardize individual patient data prospectively to facilitate research on the affected patient outcomes. Cite this article: Bone Joint Res 2023;12(9):546–558


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims. Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes. Methods. A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications. Results. Over a mean follow-up period of 10.6 years, the mean stem subsidence was similar between groups, with a mean of -1.20 mm (95% confidence interval (CI) -2.28 to -0.12) in the broaching group and a mean of -0.73 mm (95% CI -1.65 to 0.20) in the compaction group (p = 0.07). The long-term migration patterns of all stems were similar. The clinical and radiological outcomes were similar between groups. There were two intraoperative fractures in the compaction group that were fixed with cable wire and healed without complications. No stems were revised. Conclusion. Similar stem subsidence and radiological and clinical outcomes were identified after the use of compaction and broaching techniques of the femur at long-term follow-up. Only the compaction group had intraoperative periprosthetic femur fractures, but there were no long-term consequences of these. Cite this article: Bone Jt Open 2021;2(12):1035–1042


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims. In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. Methods. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively. Results. The contracture bands exhibited three typical types of shape – feather-like, striped, and mixed shapes – in MR images. Guided by MRN images, we designed minimally invasive approaches directed to each hip. These approaches resulted in a shortened incision length in each hip (0.3 cm (SD 0.1)), shorter surgery duration (25.3 minutes (SD 5.8)), less intraoperative bleeding (8.0 ml (SD 3.6)), and shorter time between the end of the operation and the patient’s first off-bed activity (17.2 hours (SD 2.0)) in each patient. Meanwhile, no serious postoperative complications occurred in all patients. The mean HOS-Sports subscale of patients increased from 71.0 (SD 5.3) to 94.83 (SD 4.24) at six months postoperatively (p < 0.001). The follow-up outcomes from all patients were “good” and “excellent”, based on objective assessments. Conclusion. Preoperative MRN analysis can be used to facilitate the determination of the relationship between contracture band and normal tissues. The minimally invasive surgical design via MRN can avoid nerve damage and improve the release effect. Cite this article: Bone Jt Open 2024;5(9):776–784


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Methods. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m. 2. (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds. Results. Mean acetabular subsidence from baseline to 24 months was 0.087 mm (SD 0.152), below the critical threshold of 0.2 mm (p = 0.005). Mean femoral subsidence from baseline to 24 months was -0.002 mm (SD 0.194), below the published reference of 0.5 mm (p < 0.001). There was significant improvement in patient-reported outcome measures at 24 months with good to excellent results. Conclusion. RSA analysis demonstrates excellent fixation with a predicted low risk of revision at ten years of this novel reverse total hip system. Clinical outcomes were consistent with safe and effective hip replacement prostheses. Cite this article: Bone Jt Open 2023;4(5):385–392


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims. The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. Methods. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores. Results. Of the 58 patients (62 hips), two (two hips) presented with dislocation or reoperation, and Kaplan-Meier analysis indicated a five-year survival rate of 96.7% (95% CI 92.4 to 100). Mean stem anteversion was 35.2° (SD 18.2°) for the Taperloc stem and 29.8° (SD 7.9°) for the Wagner Cone stem; mean reduction from Taperloc to Wagner Cone was 5.4° (SD 18.8°). Overall, 55 hips (52 patients) were simulated, and the prevalence of prosthetic impingement was lower for the Wagner Cone (5.5%, 3/55) compared with the Taperloc (20.0%, 11/55) stem, with an odds ratio of 0.20 (p = 0.038). Among the 33 respondents to the postal survey (36 hips), the mean scores were VAS pain 10.9, VAS satisfaction 86.9, and OHS 44.7. A multivariable analysis revealed that reduction of stem anteversion from Taperloc to Wagner Cone was more favourable for VAS pain (p = 0.029) and VAS satisfaction (p = 0.002). Conclusion. The mid-term survival rate for THA using the Wagner Cone stem was high, which may be supported by a reduction in prosthetic impingement. The reduction in excessive stem anteversion by using a tapered cone stem was associated with reduced pain and increased patient satisfaction. Cite this article: Bone Jt Open 2024;5(10):858–867


Bone & Joint Research
Vol. 11, Issue 8 | Pages 528 - 540
1 Aug 2022
Dong W Postlethwaite BC Wheller PA Brand D Jiao Y Li W Myers LK Gu W

Aims. This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods. A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results. Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to BMD. The expression of klotho is also associated with bone markers. Conclusion. These data indicate that BCP enhances the serum level of klotho, leading to improved bone properties and mineralization in an experimental mouse model. Cite this article: Bone Joint Res 2022;11(8):528–540


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. Conclusion. We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611–618


Bone & Joint Open
Vol. 3, Issue 8 | Pages 648 - 655
1 Aug 2022
Yeung CM Bhashyam AR Groot OQ Merchan N Newman ET Raskin KA Lozano-Calderón SA

Aims. Due to their radiolucency and favourable mechanical properties, carbon fibre nails may be a preferable alternative to titanium nails for oncology patients. We aim to compare the surgical characteristics and short-term results of patients who underwent intramedullary fixation with either a titanium or carbon fibre nail for pathological long-bone fracture. Methods. This single tertiary-institutional, retrospectively matched case-control study included 72 patients who underwent prophylactic or therapeutic fixation for pathological fracture of the humerus, femur, or tibia with either a titanium (control group, n = 36) or carbon fibre (case group, n = 36) intramedullary nail between 2016 to 2020. Patients were excluded if intramedullary fixation was combined with any other surgical procedure/fixation method. Outcomes included operating time, blood loss, fluoroscopic time, and complications. Fisher’s exact test and Mann-Whitney U test were used for categorical and continuous outcomes, respectively. Results. Patients receiving carbon nails as compared to those receiving titanium nails had higher blood loss (median 150 ml (interquartile range (IQR) 100 to 250) vs 100 ml (IQR 50 to 150); p = 0.042) and longer fluoroscopic time (median 150 seconds (IQR 114 to 182) vs 94 seconds (IQR 58 to 124); p = 0.001). Implant complications occurred in seven patients (19%) in the titanium group versus one patient (3%) in the carbon fibre group (p = 0.055). There were no notable differences between groups with regard to operating time, surgical wound infection, or survival. Conclusion. This pilot study demonstrates a non-inferior surgical and short-term clinical profile supporting further consideration of carbon fibre nails for pathological fracture fixation in orthopaedic oncology patients. Given enhanced accommodation of imaging methods important for oncological surveillance and radiation therapy planning, as well as high tolerances to fatigue stress, carbon fibre implants possess important oncological advantages over titanium implants that merit further prospective investigation. Level of evidence: III, Retrospective study. Cite this article: Bone Jt Open 2022;3(8):648–655


Bone & Joint Open
Vol. 3, Issue 9 | Pages 733 - 740
21 Sep 2022
Sacchetti F Aston W Pollock R Gikas P Cuomo P Gerrand C

Aims. The proximal tibia (PT) is the anatomical site most frequently affected by primary bone tumours after the distal femur. Reconstruction of the PT remains challenging because of the poor soft-tissue cover and the need to reconstruct the extensor mechanism. Reconstructive techniques include implantation of massive endoprosthesis (megaprosthesis), osteoarticular allografts (OAs), or allograft-prosthesis composites (APCs). Methods. This was a retrospective analysis of clinical data relating to patients who underwent proximal tibial arthroplasty in our regional bone tumour centre from 2010 to 2018. Results. A total of 76 patients fulfilled the inclusion criteria and were included in the study. Mean age at surgery was 43.2 years (12 to 86 (SD 21)). The mean follow-up period was 60.1 months (5.4 to 353). In total 21 failures were identified, giving an overall failure rate of 27.6%. Prosthesis survival at five years was 75.5%, and at ten years was 59%. At last follow-up, mean knee flexion was 89.8° (SD 36°) with a mean extensor lag of 18.1° (SD 24°). In univariate analysis, factors associated with better survival of the prosthesis were a malignant or metastatic cancer diagnosis (versus benign), with a five- and ten-year survival of 78.9% and 65.7% versus 37.5% (p = 0.045), while in-hospital length of stay longer than nine days was also associated with better prognosis with five- and ten-year survival rates at 84% and 84% versus 60% and 16% (p < 0.001). In multivariate analysis, only in-hospital length of stay was associated with longer survival (hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.08 to 0.66). Conclusion. We have shown that proximal tibial arthroplasty with endoprosthesis is a safe and reliable method for reconstruction in patients treated for orthopaedic oncological conditions. Either modular or custom implants in this series performed well. Cite this article: Bone Jt Open 2022;3(9):733–740


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims. There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results. Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion. The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476


Bone & Joint Research
Vol. 11, Issue 5 | Pages 304 - 316
17 May 2022
Kim MH Choi LY Chung JY Kim E Yang WM

Aims. The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. Methods. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed. Results. In total, 65.93% of the genes of the AUR network matched with osteoporosis-related genes. Osteoclast differentiation was predicted to be a potential pathway of AUR in osteoporosis. Based on the network pharmacology, the BMD and bone mineral content levels were significantly (p < 0.05) increased in the whole body, femur, tibia, and lumbar spine by AUR. AUR normalized the bone microstructure and the serum alkaline phosphatase (ALP), bone-specific alkaline phosphatase (bALP), osteocalcin, and calcium in comparison with the OVX group. In addition, AUR treatment reduced TRAP-positive osteoclasts and receptor activator of nuclear factor kappa-B ligand (RANKL). +. nuclear factor of activated T cells 1 (NFATc1). +. expression in the femoral body. Moreover, the expressions of initiators for osteoclastic resorption and bone matrix degradation were significantly (p < 0.05) regulated by AUR in the lumbar spine of the osteoporotic mice. Conclusion. AUR ameliorated bone loss by downregulating the RANKL/NFATc1 pathway, resulting in improvement of osteoporosis. In conclusion, AUR might be an ameliorative cure that alleviates bone loss in osteoporosis via inhibition of osteoclastic activity. Cite this article: Bone Joint Res 2022;11(5):304–316


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Bone & Joint Open
Vol. 1, Issue 9 | Pages 585 - 593
24 Sep 2020
Caterson J Williams MA McCarthy C Athanasou N Temple HT Cosker T Gibbons M

Aims. The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG. Methods. In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)). Results. AG was best visualized with T1-weighted axial images providing sufficient cover in 25 cases confirmed by pathological findings.These results demonstrate AG as a discrete and substantial muscle of the anterior compartment of the thigh, deep to VI and useful in providing anterior soft tissue margin in distal femoral resection in bone tumours. Conclusion. Preoperative assessment of cover by AG may be useful in predicting cases where AG can be dissected, sparing the remaining quadriceps muscle, and therefore function. Cite this article: Bone Joint Open 2020;1-9:585–593


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Bone & Joint Open
Vol. 3, Issue 2 | Pages 165 - 172
21 Feb 2022
Kuwahara Y Takegami Y Tokutake K Yamada Y Komaki K Ichikawa T Imagama S

Aims. Postoperative malalignment of the femur is one of the main complications in distal femur fractures. Few papers have investigated the impact of intraoperative malalignment on postoperative function and bone healing outcomes. The aim of this study was to investigate how intraoperative fracture malalignment affects postoperative bone healing and functional outcomes. Methods. In total, 140 patients were retrospectively identified from data obtained from a database of hospitals participating in a trauma research group. We divided them into two groups according to coronal plane malalignment of more than 5°: 108 had satisfactory fracture alignment (< 5°, group S), and 32 had unsatisfactory alignment (> 5°, group U). Patient characteristics and injury-related factors were recorded. We compared the rates of nonunion, implant failure, and reoperation as healing outcomes and Knee Society Score (KSS) at three, six, and 12 months as functional outcomes. We also performed a sub-analysis to assess the effect of fracture malalignment by plates and nails on postoperative outcomes. Results. The rates of nonunion and reoperation in group U were worse than those in group S (25.0% vs 14.3%; 15.6% vs 5.6%), but the differences were not significant (p = 0.180 and p = 0.126, respectively). Mean KSS in group U at all follow-up periods was significantly worse that in group S (75.7 (SD 18.8) vs 86.0 (SD 8.7); p < 0.001; 78.9 (SD 17.2) vs 89.1 (SD 9.8); p < 0.001; 85.0 (SD 11.9) vs 91.1 (SD 7.2); p = 0.002, respectively). In the sub-analysis of plates, mean KSS was significantly worse in group U at three and six months. In the sub-analysis of nails, the rate of reoperation was significantly higher in group U (28.6% vs 5.8%; p = 0.025), and mean KSS at six and 12 months was significantly worse in Group U. Conclusion. To obtain good postoperative functional results, intraoperative alignment of the coronal plane should be accurately restored to less than 5°. Cite this article: Bone Jt Open 2022;3(2):165–172


Bone & Joint Research
Vol. 10, Issue 10 | Pages 659 - 667
1 Oct 2021
Osagie-Clouard L Meeson R Sanghani-Kerai A Bostrom M Briggs T Blunn G

Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. Methods. A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 10. 6. cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 μg/kg) or low (25 μg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis. Results. Combination therapy treatment led to increased callus formation compared to controls. In the high-dose combination group there was significantly greater mineralized tissue volume and trabecular parameters compared to controls (p = 0.039). This translated to significantly improved stiffness (and ultimate load to failure (p = 0.049). The high-dose combination therapy group had the most significant improvement in mean modified Radiographic Union Score for Tibia fractures (RUST) compared to controls (13.8 (SD 1.3) vs 5.8 (SD 0.5)). All groups demonstrated significant increases in the radiological scores – RUST and Allen score – histologically compared to controls. Conclusion. We demonstrate the beneficial effect of localized MSC injections on fracture healing combined with low- or high-dose teriparatide, with efficacy dependent on PTH dose. Cite this article: Bone Joint Res 2021;10(10):659–667


Bone & Joint Open
Vol. 2, Issue 10 | Pages 796 - 805
1 Oct 2021
Plumarom Y Wilkinson BG Willey MC An Q Marsh L Karam MD

Aims. The modified Radiological Union Scale for Tibia (mRUST) fractures score was developed in order to assess progress to union and define a numerical assessment of fracture healing of metadiaphyseal fractures. This score has been shown to be valuable in predicting radiological union; however, there is no information on the sensitivity, specificity, and accuracy of this index for various cut-off scores. The aim of this study is to evaluate sensitivity, specificity, accuracy, and cut-off points of the mRUST score for the diagnosis of metadiaphyseal fractures healing. Methods. A cohort of 146 distal femur fractures were retrospectively identified at our institution. After excluding AO/OTA type B fractures, nonunions, follow-up less than 12 weeks, and patients aged less than 16 years, 104 sets of radiographs were included for analysis. Anteroposterior and lateral femur radiographs at six weeks, 12 weeks, 24 weeks, and final follow-up were separately scored by three surgeons using the mRUST score. The sensitivity and specificity of mean mRUST score were calculated using clinical and further radiological findings as a gold standard for ultimate fracture healing. A receiver operating characteristic curve was also performed to determine the cut-off points at each time point. Results. The mean mRUST score of ten at 24 weeks revealed a 91.9% sensitivity, 100% specificity, and 92.6% accuracy of predicting ultimate fracture healing. A cut-off point of 13 points revealed 41.9% sensitivity, 100% specificity, and 46.9% accuracy at the same time point. Conclusion. The mRUST score of ten points at 24 weeks can be used as a viable screening method with the highest sensitivity, specificity, and accuracy for healing of metadiaphyseal femur fractures. However, the cut-off point of 13 increases the specificity to 100%, but decreases sensitivity. Furthermore, the mRUST score should not be used at six weeks, as results show an inability to accurately predict eventual fracture healing at this time point. Cite this article: Bone Jt Open 2021;2(10):796–805


Bone & Joint Research
Vol. 9, Issue 4 | Pages 182 - 191
1 Apr 2020
D’Ambrosio A Peduzzi L Roche O Bothorel H Saffarini M Bonnomet F

Aims. The diversity of femoral morphology renders femoral component sizing in total hip arthroplasty (THA) challenging. We aimed to determine whether femoral morphology and femoral component filling influence early clinical and radiological outcomes following THA using fully hydroxyapatite (HA)-coated femoral components. Methods. We retrospectively reviewed records of 183 primary uncemented THAs. Femoral morphology, including Dorr classification, canal bone ratio (CBR), canal flare index (CFI), and canal-calcar ratio (CCR), were calculated on preoperative radiographs. The canal fill ratio (CFR) was calculated at different levels relative to the lesser trochanter (LT) using immediate postoperative radiographs: P1, 2 cm above LT; P2, at LT; P3, 2 cm below LT; and D1, 7 cm below LT. At two years, radiological femoral component osseointegration was evaluated using the Engh score, and hip function using the Postel Merle d’Aubigné (PMA) and Oxford Hip Score (OHS). Results. CFR was moderately correlated with CCR at P1 (r = 0.44; p < 0.001), P2 (r = 0.53; p < 0.001), and CFI at P1 (r = − 0.56; p < 0.001). Absence of spot welds (n = 3, 2%) was associated with lower CCR (p = 0.049), greater CFI (p = 0.017), and lower CFR at P3 (p = 0.015). Migration (n = 9, 7%) was associated with lower CFR at P2 (p = 0.028) and P3 (p = 0.007). Varus malalignment (n = 7, 5%), predominantly in Dorr A femurs (p = 0.028), was associated with lower CFR at all levels (p < 0.05). Absence of spot welds was associated with lower PMA gait (p = 0.012) and migration with worse OHS (p = 0.032). Conclusion. This study revealed that femurs with insufficient proximal filling tend to have less favourable radiological outcomes following uncemented THA using a fully HA-coated double-tapered femoral component. Cite this article: Bone Joint Res. 2020;9(4):182–191


Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions. The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone Joint Res 2016;5:362–369. DOI: 10.1302/2046-3758.59.2000525


Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion. In conclusion, the study indicated that miR-186 could activate the BMP signalling pathway to promote fracture healing by inhibiting SMAD6 in a mouse model of femoral fracture. Cite this article: Bone Joint Res 2019;8:550–562


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.


Bone & Joint Open
Vol. 5, Issue 7 | Pages 570 - 580
10 Jul 2024
Poursalehian M Ghaderpanah R Bagheri N Mortazavi SMJ

Aims

To systematically review the predominant complication rates and changes to patient-reported outcome measures (PROMs) following osteochondral allograft (OCA) transplantation for shoulder instability.

Methods

This systematic review, following PRISMA guidelines and registered in PROSPERO, involved a comprehensive literature search using PubMed, Embase, Web of Science, and Scopus. Key search terms included “allograft”, “shoulder”, “humerus”, and “glenoid”. The review encompassed 37 studies with 456 patients, focusing on primary outcomes like failure rates and secondary outcomes such as PROMs and functional test results.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims

Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?

Methods

Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined.