Advertisement for orthosearch.org.uk
Results 1 - 20 of 84
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 111 - 111
2 Jan 2024
Barbosa F Garrudo FFF Alberte P Carvalho M Ferreira FC Silva JC
Full Access

The current procedures being applied in the clinical setting to address osteoporosis-related delayed union and nonunion bone fractures have been found to present mostly suboptimal outcomes. As a result, bone tissue engineering (BTE) solutions involving the development of implantable biomimetic scaffolds to replace damaged bone and support its regeneration are gaining interest. The piezoelectric properties of the bone tissue, which stem primarily from the significant presence of piezoelectric type I collagen fibrils in the tissue's extracellular matrix (ECM), play a key role in preserving the bone's homeostasis and provide integral assistance to the regeneration process. However, despite their significant potential, these properties of bone tend to be overlooked in most BTE-related studies. In order to bridge this gap in the literature, novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) electrospun nanofibers were developed to replicate the bone's fibrous ECM composition and electrical features. Different HAp nanoparticle concentrations (1–10%, wt%) were tested to assess their effect on the physicochemical and biological properties of the resulting fibers. The fabricated scaffolds displayed biomimetic collagen fibril-like diameters, while also presenting mechanical features akin to type I collagen. The increase in HAp presence was found to enhance both surface and piezoelectric properties of the fibers, with an improvement in scaffold wettability and increase in β-phase nucleation (translating to increased piezoelectricity) being observed. The HAp-containing scaffolds also exhibited an augmented bioactivity, with a more comprehensive surface mineralization of the fibers being obtained for the scaffolds with the highest HAp concentrations. Improved osteogenic differentiation of seeded human mesenchymal stem/stromal cells was achieved with the addition of HAp, as confirmed by an increased ALP activity, calcium deposition and upregulated expression of key osteogenic markers. Overall, our findings highlight, for the first time, the potential of combining PVDF-TrFE and HAp to develop electroactive and osteoinductive nanofibers for BTE. Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), the PhD scholarship (2022.10572.BD) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 110 - 110
2 Jan 2024
Barbosa F Silva J Garrudo F Cabral J Morgado J Ferreira F
Full Access

Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of synthetic grafts for replacing damaged bone and promoting the tissue's regeneration are being investigated. The electrical stimulation (ES) of bone defects using direct current has yielded very promising results, with neo tissue formation being achieved in the target sites in vivo. Electroactive implantable scaffolds comprised by conductive biomaterials could be used to assist this kind of therapy by either directing the ES specifically to the damaged site or promoting the integration of electrodes within the bone tissue as a coating. In this study, we developed novel conductive heat-treated polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning capable of mimicking key native features of the bone tissue's extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The developed scaffolds were doped with sulfuric acid and mineralized in Simulated Body Fluid to mimic the inorganic phase of bone ECM. As expected, the doped PAN/PEDOT:PSS nanofibers exhibited electroconductive properties and were able to preserve their fibrous structure. The addition of PEDOT:PSS was found to improve the bioactivity of the scaffolds, with a more significant in vitro mineralization being obtained. By seeding the scaffolds with MG-63 osteoblasts and human mesenchymal stem/stromal cells, an increased cell proliferation was observed for the mineralized PAN/PEDOT:PSS nanofibers, which also registered an increased expression of key osteogenic markers (e.g Osteopontin). Our findings appear to corroborate the promising potential of the generated nanofibers for future ES-based BTE applications. Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), BioMaterARISES (EXPL/CTM-CTM/0995/2021) and OptiBioScaffold (PTDC/EME-SIS/32554/2017, POCI-01- 0145-FEDER- 32554), the PhD scholarship (2022.10572.BD) and through institutional funding to iBB (UIDB/04565/2020 and UIDP/04565/2020), Associate Laboratory i4HB (LA/P/0140/2020) and IT (UIDB/50008/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 34 - 34
2 Jan 2024
Karoichan A Tabrizian M
Full Access

Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have great promise in the field of orthopaedic nanomedicine due to their regenerative, as well as immunomodulatory and anti-inflammatory properties. Researchers are interested in harnessing these biologically sourced nanovesicles as powerful therapeutic tools with intrinsic bioactivity to help treat various orthopaedic diseases and defects. Recently, a new class of EV mimetics has emerged known as nanoghosts (NGs). These vesicles are derived from the plasma membrane of ghost cells, thus inheriting the surface functionalities and characteristics of the parent cell while at the same time allowing for a more standardized and reproducible production and significantly greater yield when compared to EVs. This study aims to investigate and compare the osteoinductive potential of MSC-EVs and MSC-NGs in vitro as novel tools in the field of bone tissue engineering and nanomedicine. To carry out this investigation, MSC-EVs were isolated from serum-free MSC conditioned media through differential ultracentrifugation. The remaining cells were treated with hypotonic buffer to produce MSC-ghosts that were then homogenized and serially extruded through 400 and 200 nm polycarbonate membranes to form the MSC-NGs. The concentration, size distribution, zeta potential, and protein content of the isolated nanoparticles were assessed. Afterwards, MSCs were treated with either MSC-EVs or MSC-NGs under osteogenic conditions, and their differentiation was assessed through secreted ALP assay, qPCR, and Alizarin Red mineralization staining. Isolation of MSC-EVs and MSC-NGs was successful, with relatively similar mean diameter size and colloidal stability. No effect on MSC viability and metabolic activity was observed with either treatment. Both MSC-EV and MSC-NG groups had enhanced osteogenic outcomes compared to the control; however, a trend was observed that suggests MSC-NGs as better osteoinductive mediators compared to MSC-EVs. Acknowledgements: The authors would like to acknowledge Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, CHRP, and McGill's Faculty of Dental Medicine and Oral Health Sciences for their financial support


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 98 - 98
2 Jan 2024
Aydin MS
Full Access

Conventional 3D printing by itself is incapable of creating pores on a micro scale within deposited filaments throughout 3D scaffolds. These pores and hence larger surface areas are needed for cells to be adhered, proliferated, and differentiated. The aim of this work was to fabricate 3D polycaprolactone (PCL) scaffolds with internal multiscale porosity by using two different 3D printing techniques (ink/pellet of polymer-salt composite in low/high temperature printing) combined with salt leaching to improve cell adhesion, and cell proliferation besides to change degradation rate of PCL scaffolds:

1. Non-solvent phase separation integrated 3D printing of polymer-salt inks with various salt content (i.e., low temperature ink-based printing, LT).

2. FDM printing of composite polymer-salt pellets which will be obtained by casting and evaporating of prepared ink (i.e., high temperature composite-pellet-based printing, HT).

Further, the two approaches were followed by post salt leaching. Stem cells were able to attach on the surface and grow up to 14 days based on increasing cellular activities.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 99 - 99
2 Jan 2024
Johansen Å Lin J Yamada S Yassin MA Hutchinson D Malkoch M Mustafa K
Full Access

Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties. The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line. Bone marrow derived mesenchymal stem cells were used to evaluate the osteogenic differentiation and consequently the materials potential in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 9 - 9
2 Jan 2024
Ma H Lei B Zhang Y
Full Access

3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and osteogenesis properties along with macrophage M2 phenotypic polarization, inflammatory factors reducing, promotion of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Additionally, PEEK-PCS displays good autofluorescence properties in vitro and in vivo, with stable fluorescence for 14 days, suggesting potential bioimaging applications. The study confirms that PEEK in situ grafting with thermo-polymerized PCS elastomers is a viable approach for creating multifunctional (bone defect adaptation, bioimaging, immune regulation, and osseointegration) implants for bone tissue engineering


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 133 - 133
2 Jan 2024
Carvalho M Cabral J da Silva C
Full Access

Mesenchymal stromal cells (MSC) have been proposed as an emerging cell therapy for bone tissue engineering applications. However, the healing capacity of the bone tissue is often compromised by patient's age and comorbidities, such as osteoporosis. In this context, it is important to understand the impact of donor age on the therapeutic potential of MSC. Importantly, the impact on donor age is not restricted to cells themselves but also to their microenvironment that is known to affect cell function. The extracellular matrix (ECM) has an important role in stem cell microenvironment, being able to modulate cell proliferation, self-renewal and differentiation. Decellularized cell-derived ECM (dECM) has been explored for regenerative medicine applications due to its bioactivity and its resemblance to the in vivo microenvironment. Thus, dECM offers the opportunity not only to develop microenvironments with customizable properties for improvement of cellular functions but also as a platform to study cellular niches in health and disease. In this study, we investigated the capacity of the microenvironment to rescue the impaired proliferative and osteogenic potential of aged MSC. The goal of this work was to understand if the osteogenic capacity of MSC could be modulated by exposure to a dECM derived from cells obtained from young donors. When aged MSC were cultured on dECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the osteogenic differentiation capacity of MSC. dECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments. Acknowledgements: The authors thank FCT for funding through the project DentalBioMatrix (PTDC/BTM-MAT/3538/2020) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 138 - 138
2 Jan 2024
Silva J Garrudo F Meneses J Marcelino P Barbosa F Moura C Alves N Pascoal-Faria P Ferreira F
Full Access

The growing number of non-union fractures in an aging population has increased the clinical demand for tissue-engineered bone. Electrical stimulation (ES) has been described as a promising strategy for bone regeneration treatments in several clinical studies. However the underlying mechanism by which ES augments bone formation is still poorly understood and its use in bone tissue engineering (BTE) strategies is currently underexplored. Additive manufacturing (AM) technologies (Fused Deposition Modeling/3D Printing) have been widely used in BTE due to their ability to fabricate scaffolds with a high control over their structural and mechanical properties in a reproducible and scalable manner. Thus, in this work, we combined AM methods with conductive biomaterials and ES to enhance the osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) envisaging improved BTE strategies. First, we started by developing AM-based electro-bioreactor devices containing medical-grade electrodes (stainless steel and Ti6Al4V) to apply ES to monolayer 2D cultures and 3D cell-seeded scaffolds. Computer modeling(Finite Element Analysis-FEA) was employed to predict the magnitude/distribution of electrical fields within the ES devices and along the different conductive scaffolds. Prior to scaffold culture, 5 different ES protocols were tested in terms of their ability to promote hBMSCs proliferation and osteogenic differentiation in 2D cultures. The best performance ES protocol was then used in two different AM-based BTE strategies: 1) Two different conductive scaffolds (conductive poly lactic acid (PLA) and titanium) were seeded with hBMSCs and cultured for 21 days under osteogenic medium conditions with and without ES and their biological performance was evaluated in comparison to non-conductive standard PLA scaffolds; 2) Different PEDOT:PSS-based coating solutions were screened to obtain PEDOT:PSS/Gelatin-coated 3D polycaprolactone (PCL) scaffolds with a high(11 S.cm. -1. ) and stable electroconductivity. When cultured under ES, PEDOT:PSS/Gelatin-PCL scaffolds enhanced significantly hBMSCs osteogenic differentiation and mineralization(calcium deposition), highlighting their potential for BTE applications. Acknowledgements: Funding received from FCT through projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), and to the institutions iBB (UIDB/04565/2020), CDRSP (UIDB/04044/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 139 - 139
2 Jan 2024
van Griensven M
Full Access

Anatomically, bone consists of building blocks called osteons, which in turn comprise a central canal that contains nerves and blood vessels. This indicates that bone is a highly innervated and vascularized tissue. The function of vascularization in bone (development) is well-established: providing oxygen and nutrients that are necessary for the formation, maintenance, and healing. As a result, in the field of bone tissue engineering many research efforts take vascularization into account, focusing on engineering vascularized bone. In contrast, while bone anatomy indicates that the role of innervation in bone is equally important, the role of innervation in bone tissue engineering has often been disregarded. For many years, the role of innervation in bone was mostly clear in physiology, where innervation of a skeleton is responsible for sensing pain and other sensory stimuli. Unraveling its role on a cellular level is far more complex, yet more recent research efforts have unveiled that innervation has an influence on osteoblast and osteoclast activity. Such innervation activities have an important role in the regulation of bone homeostasis, stimulating bone formation and inhibiting resorption. Furthermore, due to their anatomical proximity, skeletal nerves and blood vessels interact and influence each other, which is also demonstrated by pathways cross-over and joint responses to stimuli. Besides those closely connected sytems, the immune system plays also a pivotal role in bone regeneration. Certain cytokines are important to attract osteogenic cells and (partially) inhibit bone resorption. Several leukocytes also play a role in the bone regeneration process. Overall, bone interacts with several systems. Aberrations in those systems affect the bone and are important to understand in the context of bone regeneration. This crosstalk has become more evident and is taken more into consideration. This leads to more complex tissue regeneration, but may recapitulate better physiological situations


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 81 - 81
4 Apr 2023
Zühlke A Banicevic I Obradovic B Gasik M
Full Access

Design of bone tissue engineering scaffolds imposes a number of requirements for their physical properties, in particular porosity and mechanical behaviour. Alginates are known as a potential material for such purposes, usually deploying calcium as a cross-linker. Calcium over-expression was reported having proinflammatory effect, which is not always desirable. Contrary to this, barium has better immunomodulatory outcome but data for barium as a cross-linker are scarce. In this work the objective was to produce Ba-linked alginates and compare their viscoelastic properties with Ca-linked controls in vitro. Sodium alginate aqueous solution (1 wt%) with 0.03 wt.% CaCl. 2. is gelled in dialysis tubing immersed in 27 mM CaCl. 2. (controls) or BaCl. 2. , for 48 h, followed by freeze-drying and rehydration (with 0.3 wt.% CaCl. 2. and 0.8 wt.% NaCl). Hydrogel discs (diameter 8-10 mm, thickness 4-6 mm) were assessed in dry and wet (DMEM immersed) states by dynamic mechanical analysis (DMA) under compressive creep conditions with increased loads, frequency scans and strain-controlled sweeps in physiological range (0.1-20 Hz) at 25°C and 37°C. Resulting data were analysed by conventional methods and by a model-free BEST (Biomaterials Enhanced Simulation Testing) to extract invariant values and material functions. Significant differences were observed in properties of Ba-linked hydrogel scaffolds vs. Ca-linked controls. Specifically, for the similar porosity Ba-samples exhibited lower creep compliance, higher dynamical stiffness and lower loss factor in the whole studied range. Invariant modulus exhibited a non-linear decay vs. applied stress. These differences were observed in both dry and wet states and temperatures. Use of barium as a cross-linker for alginates allows further modification of biomechanical properties of the scaffolds for better compliancy to the tissues in the application. Barium release might have an immunomodulating effect but also promote ion exchange for osteogenesis due to additional Ca/Ba concentration gradient


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core. Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×10. 4. cells proliferated faster than 5×10. 4. and 1×10. 5. cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core. This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2022
Borciani G Montalbano G Melo P Baldini N Ciapetti G Brovarone CV
Full Access

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. Following chemical crosslinking with genipin, the nanostructured materials were tested for 2–3 weeks with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors. The favourable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of bone cells, encouraging a further investigation of the two bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 74 - 74
1 Dec 2021
Chen H Khong J Huang J
Full Access

Abstract. Objectives. Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT. Methods. PCL/LP composite ink was formulated by dissolving 50% m/v PCL in dichloromethane with Laponite loading of up to 30%. The rheological properties of the inks were determined using Discovery HR-2 rheometer. A custom-made direct ink writer was used to fabricate both porous scaffold with 0°/90° lay-down pattern, and solid dumbbell-shaped specimens (ASTM D638 Type IV) with two printing orientations, 0° and 90° to the loading direction in tensile testing. The 3D structure of specimens was assessed using a micro-CT. Independent t-tests were performed with significance level at p<0.05. Results. The addition of Laponite in PCL ink has significantly enhanced viscosity for shape fidelity and shear-thinning property facilitating extrusion for DIW. Uniform distribution of Laponite was illustrated by micro-CT. For the 32-layer scaffold, interconnectivity of pores is observed at all 3 planes. The variation of height and width of layers is within 6% except the bottom 2 layers which are significantly lower and wider than other layers for mechanical support. For solid specimens, no ditches/interfaces between filaments are observed in 90° orientation while they are distinctive in 0° orientation because deposited filaments contact each other sooner in 90° orientation. 90° specimens also have lower air gap fraction (0.8 vs 5.4 %) and significantly higher Young's modulus (235 vs 195 MPa) and tensile strength (12.0 vs 9.5 MPa). Conclusions. The mechanical properties and printability of PCL/Laponite composites can be improved by controlling printing parameters; Micro-CT is an important tool to investigate the structure and properties of 3D printed products for bone tissue engineering


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 82 - 82
1 Mar 2021
Melke J Hofmann S
Full Access

It is well known that environmental cues such as mechanical loading and/or cell culture medium composition affect tissue-engineered constructs resembling natural bone. These studies are mostly based on an initial setting of the influential parameter that will not be further changed throughout the study. Through the growth of the cells and the deposition of the extracellular matrix (ECM) the initial environmental conditions of the cells will change, and with that also the loads on the cells will change. This study investigates how changes of mechanical load or media composition during culture influences the differentiation and ECM production of mesenchymal stromal cells seeded on porous 3D silk fibroin scaffolds. ECM formation, ECM mineralization and cell differentiation in 3D tissue-engineered bone were analyzed using microscopic tools. Our results suggest that mechanical stimuli are necessary to differentiate human mesenchymal stromal cells of both bone marrow and adipose tissue origin into ECM producing osteoblasts which ultimately become ECM-embedded osteocytes. However, the influence of this stimulus seems to fade quickly after the onset of the culture. Constructs which were initially cultured under mechanical loading continued to deposit minerals at a similar growth rate once the mechanical stimulation was stopped. On the other hand, cell culture medium supplementation with FBS was identified as an extremely potent biochemical cue that influences the mechanosensitivity of the cells with regards to cell differentiation, ECM secretion and mineral deposition.

Only through a thorough understanding on these influences over time will we be able to predictably control tissue development in vitro.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 95 - 95
1 Mar 2021
McKeown J Hall A Paxton J
Full Access

Abstract. Objectives. Musculoskeletal injuries are the leading contributor to disability globally, yet current treatments do not offer complete restoration of the tissue. This has resulted in the exploration of novel interventions based on tissue engineering as a therapeutic solution. This study aimed to explore novel collagen sponges as scaffolds for bone tissue engineering as an initial step in the construction of tendon-bone co-culture constructs in vitro. Methods. Collagen sponges (Jellagen, UK), manufactured from Jellyfish collagen were seeded with 10,000 rat osteoblast cells (dROBs) and maintained in culture for 6 days (37°C, 5% CO. 2. ). Qualitative viability was assessed by a fluorescent Calcein-AM live cell stain and quantitively via the CYQUANT cell viability assay (Invitrogen, UK) on days 0, 1, 4 and 6 in culture (n=3 per time point). Digital imaging was also used to assess size and shape changes to the collagen sponge in culture. Results. The collagen sponge biomaterial supported dROB adhesion, viability and proliferation with an abundance of viable cells detected by fluorescent microscopy on day 6. Indeed, the quantitative assessment confirmed that cellular proliferation was evident with increases in fluorescence detected from 517 (± 88) RFU to 8730 ± (2228) RFU from day 0 to 6. In addition, the size of the collagen sponges appeared to decrease over time, indicating contraction of the collagen sponges in culture. Conclusions. This preliminary study has demonstrated that the novel collagen sponges support cellular attachment and proliferation of osteoblasts, and is an important first step in building a bone-tendon construct in vitro. Our future work is focussed on using the osteoblast-seeded sponges in combination with tendon cells, to build a co-culture to represent the bone-tendon interface in vitro. This work has the potential to advance the clinical translation of tissue-engineered tendons to the clinic. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project