This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA. Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups.Aims
Methods
The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.Aims
Methods
Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted bovine calf serum as the articular surface lubricant. Component motion and reaction force outputs were collected from the knee simulator and compared against the kinematic targets of the design in order to validate the surface-guided knee concept. Results. Under deep flexion conditions of up to 140° of squatting the surface-guided knee implants were found to undergo a maximum of 22.2° of tibial internal rotation and 20.4 mm of posterior rollback on the lateral condyle. Pivoting of the knee joint was centered about the highly congruent medial condyle which experienced only 1.6 mm of posterior rollback. Experimental results were within 2° (internal-external rotation) and 1 mm (anteroposterior translation) agreement with the design target throughout the applied exercises (Figure 2). Conclusion. The results of this test confirm that by combining a constrained medial condyle with guiding geometry on the lateral condyle,
The Precice intramedullary limb-lengthening system has demonstrated significant benefits over external fixation lengthening methods, leading to a paradigm shift in limb lengthening. This study compares outcomes following antegrade and retrograde femoral lengthening in both adolescent and adult patients. A retrospective review of prospectively collected data was undertaken of a consecutive series of 107 femoral lengthening operations in 92 patients. In total, 73 antegrade nails and 34 retrograde nails were inserted. Outcome was assessed by the regenerate healing index (HI), hip and knee range of movement (ROM), and the presence of any complications.Aims
Patients and Methods
Many recent knee prostheses are designed aiming to the physiological knee kinematics on tibiofemoral joint, which means the femoral rollback and medial pivot motion. However, there have been few studies how to design a patellar component. Since patella and tibia are connected by a patellar tendon, tibiofemoral and patellofemoral motion or contact forces might affect each other. In this study, we aimed to discuss the optimal design of patellar component and simulated the knee flexion using four types of patellar shape during
Introduction. There are over ½ million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and
Our aim was to investigate whether it is possible to predict post-operative kinematics (Post-Ope) from intra-operative kinematics (Intra-Ope) after total knee arthroplasty. Our study were performed for 11 patients (14 knees) who underwent primary PS TKA using CT-based navigation system between Sept.2012 and Sept.2014. The mean subject age was 71.5 ± 5.5 years at the time of surgery. Intra-Ope was measured using the navigation system after implantation during passive full extension and flexion imposed by the surgeon. Under fluoroscopic surveillance, each patient was asked to perform sequential
Introduction. There are over one-half million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and
Total knee arthroplasty has been the main treatment method among advanced osteoarthritis (OA) patients. The main post-operative evaluation considers the level of pain, stability and range of motion (ROM). The knee flexion level is one of the most important categories in the total knee arthroplasty patient's satisfaction in Asian countries due to consistent habits of floor-sitting, squating, kneeling and cross legged sitting. In this study, we discovered that the posterior capsular release enabled the further flexion angles by 14 degrees compared to the average ROM without posterior release group. Our objective was to increase the ROM using the conventional total knee arthroplasty by the posterior capsular release. Posterior capsular release is being used in order to manage the flexion contraction. Although the high flexion method extends the contact area during flexion by extending the posterior condyle by 2mm, the main problem has been the early femoral loosening. We searched for the method to get the
Introduction. Despite decades of clinical research in artificial joints and underlying failure mechanisms, systematical and reproducible identification of reasons for complications in total knee replacements (TKR) remains difficult. Due to the complex dynamic interaction of implant system and biological situs, malfunction eventually leading to failure is multifactorial and remains not fully understood. The aim of present study was to evaluate different TKR designs and positions with regard to joint kinematics and stability under dynamic conditions by using a robot-based hardware-in-the-loop (HiL) setup. Material & methods. An industrial 6-axis robot with 6-axis force-torque sensor mounted into its end-effector moved and loaded real, commercially available TKR (bicondylar, cruciate-retaining) that were in virtual interaction with a subject-specific computational multibody model representing the anatomical situs of the knee joint while performing passive seated
In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
Thigh-calf contact force is the force acting on posterior side of the thigh and calf during
We hypothesized that using the navigation system, intra-operative knee kinematics after implantation measured may predict that post-operative kinematic in activities of daily living. Our aim was to compare intra-operative knee kinematics by a computed tomography (CT)-based navigation system and post-operative by the 2- to 3-dimensional registration techniques (2D3D). This study were performed for 8 patients (10 knees, medial osteoarthritis) who underwent primary PS TKA using CT-based navigation system. The median follow-up period from operation date to fluoroscopic surveillance date was 13 months (range 5 – 37 months). Navigation and 2D3D had a common coordinate origin for components. Medial and lateral femoral condyle anterior-posterior translation (MFT and LFT) were respectively defined as the distance of the projection of the points (which was set on the top of the posterior femoral pegs) onto the axial plane of the tibial coordinate system. Intraoperative kinematics was measured using the navigation system after final implantation and closure of the retinaculum during passive full flexion and extension imposed by the surgeon. Under fluoroscopic surveillance in the sagittal plane, each patient was asked to perform sequential
The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle.Objectives
Materials and Methods
Introduction. Recent advances in 3D printing enable the use of custom patient-specific instruments to place drill guides and cutting slots for knee replacement surgery. However, such techniques limit the ability to intra-operatively adjust an implant plan based on soft-tissue tension and/or joint pathology observed in the operating room, e.g. cruciate ligament integrity. It is hypothesized that given the opportunity, a skilled surgeon will make intra-operative adjustments based on intra-operative information not captured by the hard tissue anatomy reconstructed from a pre-operative CT scan or standing x-ray. For example, tibiofemoral implant gaps measured intra-operatively are an indication of soft-tissue tension in the patient's knee, and may influence a surgeon to adjust implant position, orientation or size. This study investigates the frequency and magnitude of intra-operative adjustments from a single orthopedic surgeon during 38 unicondylar knee arthroplasty (UKA) cases. Methods. For each patient, a pre-operative plan was created based on the bony anatomy reconstructed from the pre-operative CT. This plan is analogous to a plan created with patient-specific cutting blocks or customized implants. With robotic technology that utilizes pre-operative imaging, intra-operative navigation and robotic execution, this “anatomic” plan can be fine-tuned and adjusted based on the soft tissue envelop measured intra-operatively. The relative positions of the femur and the tibia are measured intra-operatively under a valgus load (for medial UKA, varus load for lateral UKA) for each patient from extension to
Background. The patterns and magnitudes of axial femorotibial rotation are variable due to the prosthesis design, ligamentous balancing, and surgical procedures. LCS mobile-bearing TKA has been reported the good clinical results, however, knee kinematics has not been fully understood. Therefore, we aimed to investigate the effects of the weight-bearing (WB) condition on the kinematics of mobile-bearing total knee arthroplasty (TKA). Methods. We examined 12 patients (19 knees) implanted with a low contact stress (LCS) mobile-bearing TKA system using a two- to three-dimensional registration technique as previously reported [1]. All 12 patients were diagnosed with medial knee osteoarthritis. The in vivo kinematics of dynamic
There have been a large number of studies reporting the knee joint force during level walking, however, the data of during
1. Introduction. Such a Total Knee Arthroplasty (TKA) that is capable of making high knee flexion has been long awaited for the Asian and Muslim people. Our research group has developed the TKA possible to attain complete
Introduction. Malrotation of the tibial component would lead to various complications after total knee arthroplasty (TKA) such as improper joint kinematics, patellofemoral instability, or excessive wear of polyethylene. However, despite reports of internal rotation of the tibial component being associated with more severe pain or stiffness than external rotation, the biomechanical reasons remain largely unknown. In this study, we used a musculoskeletal computer model to simulate a squat (0°–130°–0° flexion) and analyzed the effects of malrotated tibial component on lateral and medial collateral ligament (LCL and MCL) tensions, tibiofemoral and patellofemoral contact stresses, during the weight-bearing
The Magna ROM 21 knee prosthesis was designed in 1994 to match the anatomical characteristics of the Japanese knee and achieve