Advertisement for orthosearch.org.uk
Results 1 - 20 of 419
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1426 - 1430
1 Dec 2024
Warne CN Ryan S Yu E Osmon DR Berry DJ Abdel MP

Aims

Cutibacterium acnes (C. acnes; previously known as Propionibacterium acnes or P. acnes) periprosthetic hip and knee infections are under-reported. While culture contamination with C. acnes occurs, true infections are important to recognize and treat. We sought to describe the demographics and treatment outcomes of patients with C. acnes periprosthetic joint infections (PJIs) of the hip and knee.

Methods

Patients with C. acnes PJI between January 2005 and December 2018 were retrospectively reviewed utilizing the institutional total joint registry. Patients with monomicrobial PJI and two or more positive cultures were considered to have true C. acnes PJI. Patients with polymicrobial infection or with only one positive culture were excluded. This resulted in 35 PJIs (21 hips and 14 knees); the patients’ mean age was 63 years (35 to 84) and 15 (43%) were female. Mean follow-up was five years (1 to 14).


Bone & Joint Research
Vol. 13, Issue 12 | Pages 695 - 702
1 Dec 2024
Cordero García-Galán E Medel-Plaza M Pozo-Kreilinger JJ Sarnago H Lucía Ó Rico-Nieto A Esteban J Gomez-Barrena E

Aims

Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting.

Methods

Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Staphylococcus aureus biofilm. Sacrifice and sample collection were performed 24, 48, or 96 hours postoperatively. Retrieved screws were sonicated, and adhered bacteria were estimated via drop-plate. Width of bone necrosis in retrieved femora was assessed through microscopic examination. Analysis was performed using non-parametric tests with significance fixed at p ≤ 0.05.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 68 - 68
22 Nov 2024
Mannala G Labat B Ladam G Pascal T Walter N Szymski D Riool M Alt V Rupp M
Full Access

Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of incubation. Further, scanning electron microscopy (SEM) analyses were performed to study the effect of nisin on biofilm formation. Results. The larvae receiving the nisin-coated K-wires showed significantly higher survival rates compared to uncoated titanium K-wires, although not when compared to control-coated K-wires. A more than 1-log reduction in number of bacteria on the implant surface and in the surrounding tissue was observed in larvae receiving the nisin-coated K-wires, when compared to uncoated titanium K-wires SEM analysis showed reduced colonization of the bacteria nisin-coated K-wires compared to the controls. Conclusions. In conclusion, the antimicrobial nisin layer-by-layer based coating applied on titanium surfaces is able to prevent implant-related S. aureus biofilm infection in G. mellonella and is a promising antimicrobial strategy to prevent implant-related infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 44 - 44
22 Nov 2024
De Bleeckere A Neyt J Vandendriessche S Boelens J Coenye T
Full Access

Aim. Fast and accurate identification of pathogens causing periprosthetic joint infections (PJI) is essential to initiate effective antimicrobial treatment. Culture-based approaches frequently yield false negative results, despite clear signs of infection. This may be due to the use of general growth media, which do not mimic the conditions at site of infection. Possible alternative approaches include DNA-based techniques, the use of in vivo-like media and isothermal microcalorimetry (ITC). We developed a synthetic synovial fluid (SSF) medium that closely resembles the in vivo microenvironment and allows to grow and study PJI pathogens in physiologically relevant conditions. In this study we investigated whether the use of ITC in combination with the SSF medium can improve accuracy and time to detection in the context of PJI. Methods. In this study, 120 synovial fluid samples were included, aspirated from patients with clinical signs of PJI. For these samples microbiology data (obtained in the clinical microbiology lab using standard procedures) and next generation sequencing (NGS) data, were available. The samples were incubated in the SSF medium at different oxygen levels (21% O. 2. , 3% O. 2. and 0% O. 2. ) for 10 days. Every 24h, the presence of growth was checked. From positive samples, cultures were purified on Columbia blood agar and identified using MALDI-TOF. In parallel, heat produced by metabolically active microorganisms present in the samples was measured using ITC (calScreener, Symcel), (96h at 37°C, in SSF, BHI and thioglycolate). From the resulting thermograms the ‘time to activity’ could be derived. The accuracy and time to detection were compared between the different detection methods. Results. So far, seven samples were investigated. Using conventional culture-based techniques only 14.3% of the samples resulted in positive cultures, whereas NGS indicated the presence of microorganisms in 57.1% of the samples (with 3/7 samples being polymicrobial). Strikingly, 100% of the samples resulted in positive cultures after incubation in the SSF medium, with time to detection varying from 1 to 9 days. MALDI-TOF revealed all samples to be polymicrobial after cultivation in SSF, identifying organisms not detected by conventional techniques or NGS. For the samples investigated so far, signals obtained with ITC were low, probably reflecting the low microbial load in the first set of samples. Conclusion. These initial results highlight the potential of the SSF medium as an alternative culture medium to detect microorganisms in PJI context. Further studies with additional samples are ongoing; in addition, the microcalorimetry workflow is being optimized


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 69 - 69
22 Nov 2024
De Vecchi E Riccardi M Mastroianni N
Full Access

Aim. Diagnosis of prosthetic joint infection are often complicated by the presence of biofilm, which hampers bacteria dislodging from the implants, thus affecting sensitivity of cultures. In the last 20 years several studies have evidenced the usefulness of implant sonication to improve microbial recovery from biofilm formed on inert substrates. More recently, treatment of prosthetic joints and tissues with Dithiothreitol, a sulphur compound already used in routine diagnostic workflow for fluidification of respiratory samples, has proved to be not inferior to sonication in microbiological diagnosis of prosthetic joint infections. This study aimed to evaluate if the combination of the two treatments could further improve microbial retrieval from biofilm in an in vitro model. Method. Three isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Eschericha coli and Pseudomonas aeruginosa responsible of prosthetic joint infections were used. They were grown onto 3 titanium discs (20 mm diameter) and incubated in 3 sterile plastic containers with 15 mL of Triptyc Soy Broth. After overnight incubation, not adhered cells were removed and fresh broth was added to each sample. After 48 hours incubation, the exausted broth was removed and one sample was used for sonication, one for treatment with 0,1% (v:v) Dithiothreitol and one treated with Dithiothreitol followed by sonication. Treated fluids were plated on Muller Hinton Agar plates for colony count. One-way ANOVA analysis was performed to evidence statistical differences between treatments. Results. Similar colony counts were observed for the 3 treatments: 10.1± 0.77 log CFU/mL for Dithiothreitol, 10.0 ± 0.75 for sonication and 10.1 ±0.73 for dithiothreitol + sonication. No statistical differences between the 3 treatments were evidenced by ANOVA analysis. Conclusions. Results seems to confirm that treatment with dithiothreitol is equivalent to sonication in recovering bacteria from biofilm grown on inert surface. Combining dithiotreitol treatment with sonication does not significantly improve bacterial recovery in respect to each treatment alone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 42 - 42
22 Nov 2024
Mu W Tarabichi S Xu B Wang F Li Y Lizcano JD Zhang X Parvizi J Cao L
Full Access

Aim. This study aimed to evaluate the impact of intraoperative direct sonication on the yield of traditional culture and the time to positivity (TTP) of cultures obtained for periprosthetic joint infection (PJI), thereby assessing its potential to improve diagnostic efficiency and reduce contamination risk. Method. A prospective cohort study was conducted at a tertiary care center, involving 190 patients undergoing revision surgery for PJI from August 2021 to January 2024. Patients were included based on the 2018 International Consensus Meeting definition of PJI. The study utilized a novel sonication protocol, which involved direct intraoperative sonication of the implant and tissue, followed by incubation in a BACT/ALERT 3D system. The primary outcomes measured were the number and percentage of positive culture samples, identified microorganisms, and the TTP of each culture. Statistical analysis was performed using R software, with various tests applied to assess the significance of findings. Results. The study included 510 positive cultures from 190 patients, demonstrating that sonication significantly improved the positivity rate for both tissue and prosthesis specimens (p < 0.05). The median TTP for all samples was 3.13 days, with sonicated samples showing a significantly shorter TTP compared to non-sonicated samples (p < 0.05). Specifically, the shortest median TTP was observed in prosthesis post-sonication samples. Furthermore, the study found that Gram-positive organisms had a shorter TTP than gram-negative organisms, and specific microorganisms like Staphylococcus aureus and MRSE showed the fastest TTP. The analysis also revealed higher positivity rates in chronic PJIs compared to acute PJIs for sonicated tissue samples. Conclusions. The study demonstrates that intraoperative direct sonication combined with the BACT/ALERT 3D system can significantly enhance the diagnostic yield of cultures and reduce the TTP for common PJI pathogens. This novel technique not only improves pathogen detection, facilitating the tailoring of antibiotic therapy, but also potentially reduces the risk of contamination associated with sonication. These findings suggest that direct intraoperative sonication could be a valuable addition to the current diagnostic protocols for PJI, contributing to more effective management and treatment of this complex condition. Further research is necessary to explore the clinical significance of TTP and its correlation with patient outcomes in PJI


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 82 - 82
22 Nov 2024
Roskar S Rak M Mihalic R Trebse R
Full Access

Aim. Periprosthetic joint infection (PJI) is one of the most devastating complications after joint replacement. It is associated with high morbidity and economic burden when misdiagnosed as an aseptic failure. Among all cases of PJI, up to 25% could yield negative cultures. Conversely, among cases of aseptic failures, up to 30% may actually be undiagnosed PJIs. In PJIs microbiological diagnosis is a key step for successful treatment. Sonication of the removed prosthesis is more sensitive than conventional periprosthetic-tissue culture, especially in patients who received antimicrobial therapy before surgery. This study aimed to compare the diagnostic value of classic sonication fluid cultures (SF-C) and sonication fluid incubation in blood culture bottle (SF-BCB). Method. Between 2016 and 2018 we analysed 160 revision procedures of joint arthroplasties. For each procedure, at least 5 microbiological and multiple histopathological samples were harvested, and explant sonication was performed which was further analysed by SF-C and SF-BCB. For SF-C classical cultivation of sonication fluid was performed. While for SF-BCB, 10 mL of sonication fluid was inoculated into aerobic and anaerobic lytic blood culture bottles. The definite diagnosis of PJI was based on the EBJIS definition. Results. Among 160 revisions, 59 PJIs were identified, 15 patients were treated with the debridement and implant retention, 7 patients with the one-stage and 35 with the two-stage exchange, remaining 2 were partial revisions. The sensitivity of SF-C and SF-BCB were 81.5% and 94.9%, respectively. The mismatch of microbe identification was observed in 5 cases. We observed positive SF-C while negative SF-BCB in 4 cases, among them having 2 positive histology. While 12 patients have negative SF-C and positive SF-BCB, among them 3 have positive and 6 negative histology. Among these 12 patients, typical low-grade microbes were identified in 9 cases (5 cases of C. acnes, 3 cases of S. epidermidis, and 1 case of S. capitis). Conclusions. The weakest point in all PJI diagnostic criteria is their sensitivity. SF-BCB demonstrates higher sensitivity in diagnosing PJI compared to SF-C. Therefore, it appears prudent to incorporate SF-BCB into the diagnostic protocol for all patients exhibiting either low-grade PJI symptoms or experiencing undiagnosed, presumably aseptic failures, where the likelihood of misdiagnosing infection is greatest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 67 - 67
22 Nov 2024
Youf R Ruth S Mannala G Zhao Y Alt V Riool M
Full Access

Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment. Method. In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, in vitro rifampicin susceptibility assays were performed (according to EUCAST). Results. The first model indicate that in vitro biofilm maturation affects the bacterial pathogenicity in the host, depending on the S. aureus strain used. Furthermore, the more the biofilm is matured, the more the rifampicin treatment efficiency is compromised. The second model shows that, despite the fast in vivo biofilm formation in the host, the number of bacteria, either attached to the surface of the K-wire surface or in surrounding tissue of the larvae, was not increased over time. Conclusions. Altogether, these results allow the establishment of biofilm models using G. mellonella larvae in order to understand the impact of biofilm maturation on both the bacterial pathogenicity and the efficiency of antibiofilm treatments


Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims

Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism.

Methods

A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 40 - 40
14 Nov 2024
Siverino C Sun Q Yang D Solomon B Moriarty F Atkins G
Full Access

Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight incubation at a 10X minimum inhibitory concentration (MIC) of Levofloxacin and thereafter at 1XMIC. At each time point (days 1, 3, 5) viable intra- and extracellular bacteria were quantified. Result. All strains displayed similar intracellular infection and persistence capabilities in SaOS2-OB and SaOS2-OY. Independent of MOI, intracellular bacteria in SaOS2-OB decreased over time, becoming non-culturable by day 5. In contrast, SaOs2-OY displayed enhanced intracellular bacterial persistence at each time point. In the presence of increased Levofloxacin concentration (10XMIC), S. epidermidis could persist intracellularly for at least 14 days. Conclusion. This study showed for the first time that S. epidermidis can infect human osteocytes and persist intracellularly. Additionally, even a 10xMIC antibiotic concentration failed to eradicate intracellular bacteria, suggesting that persistence within osteocytes could contribute to treatment failure and establishment of chronic BJI


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims

The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus.

Methods

We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims

The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty.

Methods

A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims

Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers.

Methods

We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 10 - 10
19 Aug 2024
Thomson AL Chao CA Hammad M Mendia M Bostrom MPG Carli AV
Full Access

Retained polymethylmethacrylate (PMMA) debris in surgical instrument trays is a rare, but disquieting situation for the arthroplasty surgeon. Although retained debris could be considered to be sterile after autoclaving, there is no peer-reviewed literature to support this assumption. This uncertainty and subsequent fear of contamination from this bioburden often leads to operating room personnel turning over entire surgical tables and opening new surgical instruments, which consumes time and burdens a hospital's sterilization infrastructure. Consequently, the purpose of the current study was to determine if retained, heavily contaminated PMMA in surgical trays could be effectively sterilized through clinically utilized autoclave protocols. MSSA (Xen36, Perkin Elmer) biofilm was grown on identically sized PMMA (Palacos R) coupons for 72-hour duration. Following incubation, coupons were exposed to three commonly used sterilization protocols. Cobalt-Chrome (CC) coupons were included in the same tray, replicating instruments in proximity to retained PMMA. Autoclave protocols included: 1.) Single Instrument Flash protocol: Pre-vac, 270° F, 10 min exposure, 1 min drying, 2.) One Tray OR protocol: Pre-vac, 270° F, 4 min exposure, 1 min drying, and 3.) Standard Post-Operative protocol: Pre-vac, 270° F, 10 min exposure, 60 min drying. Control coupons did not undergo autoclaving. Coupons were then sonicated for 30 minutes in tryptic soy broth and plated to count CFUs. Experiments were performed in quadruplicate. Control coupons showed significant contamination with CFU counts in the range of 10. 6. CFU/mL. CFU counts of zero across all autoclaved PMMA and CC coupons revealed that each protocol was effective in completely eradicating culturable S. aureus, confirming clinical efficacy on orthopaedic cement sterilized in surgical trays. Our findings demonstrate that heavily contaminated PMMA and exposed metal in surgical trays can be effectively sterilized through several autoclaving protocols. Clinicians should feel confident in the efficacy of autoclave protocols in removing bacteria and its associated biofilm from othopaedic materials


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims

Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella.

Methods

For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 372 - 382
1 Aug 2024
Luger M Böhler C Puchner SE Apprich S Staats K Windhager R Sigmund IK

Aims

Serum inflammatory parameters are widely used to aid in diagnosing a periprosthetic joint infection (PJI). Due to their limited performances in the literature, novel and more accurate biomarkers are needed. Serum albumin-to-globulin ratio (AGR) and serum CRP-to-albumin ratio (CAR) have previously been proposed as potential new parameters, but results were mixed. The aim of this study was to assess the diagnostic accuracy of AGR and CAR in diagnosing PJI and to compare them to the established and widely used marker CRP.

Methods

From 2015 to 2022, a consecutive series of 275 cases of revision total hip (n = 129) and knee arthroplasty (n = 146) were included in this retrospective cohort study. Based on the 2021 European Bone and Joint Infection Society (EBJIS) definition, 144 arthroplasties were classified as septic. Using receiver operating characteristic curve (ROC) analysis, the ideal thresholds and diagnostic performances were calculated. The areas under the curve (AUCs) were compared using the z-test.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.