Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
The aim of this audit was to assess and improve the completeness and accuracy of the National Joint Registry (NJR) dataset for arthroplasty of the elbow. It was performed in two phases. In Phase 1, the completeness was assessed by comparing the NJR elbow dataset with the NHS England Hospital Episode Statistics (HES) data between April 2012 and April 2020. In order to assess the accuracy of the data, the components of each arthroplasty recorded in the NJR were compared to the type of arthroplasty which was recorded. In Phase 2, a national collaborative audit was undertaken to evaluate the reasons for unmatched data, add missing arthroplasties, and evaluate the reasons for the recording of inaccurate arthroplasties and correct them.Aims
Methods
Aim. Fast and accurate identification of pathogens causing periprosthetic joint infections (PJI) is essential to initiate effective antimicrobial treatment. Culture-based approaches frequently yield false negative results, despite clear signs of infection. This may be due to the use of general growth
Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology, collagen, and calcium production by primary bovine osteoblasts cultured upon antibiotic sol-gel surfaces were examined, and cytotoxicity evaluated using Alamar blue staining and lactate dehydrogenase assays. Concentrations of silica, calcium and phosphorus compounds within the cell layer cultured on sol-gel coatings and concentrations eluted into
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development. Method. Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic
Introduction. Osteoarthritis (OA) often results from joint misloading, which affects chondrocyte calcium signaling through mechano-sensitive receptors such as Piezo1, -2, and TRPV4. Activation of Piezo1, especially under inflammatory conditions, can trigger premature chondrocyte apoptosis. Intra-articular glucocorticoid therapy, while beneficial against inflammation and pain in osteoarthritis, may induce oxidative stress and chondrotoxicity at higher doses. This study aims to assess the effects of glucocorticoids, particularly triamcinolone, on chondrocyte elasticity and mechanosignaling. Method. Chondrocytes isolated from articular condyles obtained from patients undergoing knee replacement surgery (n= 5) were cultured for 7 days in triamcinolone acetonide (TA) at different concentrations (0.2µM – 2mM). Cytoskeletal changes were assessed by F-actin labeling. Cell elasticity was measured using atomic force microscopy (AFM). Labeling cells (n=6 patients) with the calcium-sensitive dye (Fluo-4) enabled monitoring changes in intracellular calcium fluorescence intensity during guided single-cell mechanical indentation (500 nN) by AFM. Result. Cell exposure to 2 mM TA led to cell death and crystallization of TA in the cell culture
Introduction. Tendinopathies represent a significant health burden, causing inflammation, pain, and reducing quality of life. The pivotal role of macrophages (Mφ) characterized by their ability to differentiate into proinflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the microenvironment, has gained significant interest in tissue inflammation research. Additionally, existing literature states that the interplay between tenocytes and immune cells during inflammation involves unidentified soluble factors (SF). This study aimed to investigate the effect of extracellular vesicles (EVs) and SF derived from polarized Mφ on tendon cells to provide deeper insights of their potential therapeutic applications in the context of inflammation. Method. Human monocytes were isolated from blood donor buffy coats and differentiated into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, EVs were isolated from the conditioned
A review of the literature on elbow replacement found no consistency in the clinical outcome measures which are used to assess the effectiveness of interventions. The aim of this study was to define core outcome domains for elbow replacement. A real-time Delphi survey was conducted over four weeks using outcomes from a scoping review of 362 studies on elbow replacement published between January 1990 and February 2021. A total of 583 outcome descriptors were rationalized to 139 unique outcomes. The survey consisted of 139 outcomes divided into 18 domains. The readability and clarity of the survey was determined by an advisory group including a patient representative. Participants were able to view aggregated responses from other participants in real time and to revisit their responses as many times as they wished during the study period. Participants were able to propose additional items for inclusion. A Patient and Public Inclusion and Engagement (PPIE) panel considered the consensus findings.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Complete ruptures of the ulnar collateral ligament (UCL) of the thumb are a common injury, yet little is known about their current management in the UK. The objective of this study was to assess the way complete UCL ruptures are managed in the UK. We carried out a multicentre, survey-based cross-sectional study in 37 UK centres over a 16-month period from June 2022 to September 2023. The survey results were analyzed descriptively.Aims
Methods
Recently, some smart
Background. Disability is an important multifaceted construct. Identifying sources of disability could help optimise patient care. The aim of this study was to test an approach that not only estimates severity of disability, but also identifies the source(s) of this disability. Methods. An online survey was used to collect data from a convenience sample, recruited via email and social
Two discrete legal factors enable the surgeon to treat an injured patient the fully informed, autonomous consent of the adult patient with capacity via civil law; and the medical exception to the criminal law. This article discusses current concepts in consent in trauma; and also considers the perhaps less well known medical exception to the Offences against the Person Act 1861, which exempts surgeons from criminal liability as long as they provide ‘proper medical treatment’. Cite this article:
Shoulder arthroplasty is effective in the management of end-stage glenohumeral joint arthritis. However, it is major surgery and patients must balance multiple factors when considering the procedure. An understanding of patients’ decision-making processes may facilitate greater support of those considering shoulder arthroplasty and inform the outcomes of future research. Participants were recruited from waiting lists of three consultant upper limb surgeons across two NHS hospitals. Semi-structured interviews were conducted with 12 participants who were awaiting elective shoulder arthroplasty. Transcribed interviews were analyzed using a grounded theory approach. Systematic coding was performed; initial codes were categorized and further developed into summary narratives through a process of discussion and refinement. Data collection and analyses continued until thematic saturation was reached.Aims
Methods
Ankle fractures are common, mainly affecting adults aged 50 years and over. To aid recovery, some patients are referred to physiotherapy, but referral patterns vary, likely due to uncertainty about the effectiveness of this supervised rehabilitation approach. To inform clinical practice, this study will evaluate the effectiveness of supervised versus self-directed rehabilitation in improving ankle function for older adults with ankle fractures. This will be a multicentre, parallel-group, individually randomized controlled superiority trial. We aim to recruit 344 participants aged 50 years and older with an ankle fracture treated surgically or non-surgically from at least 20 NHS hospitals. Participants will be randomized 1:1 using a web-based service to supervised rehabilitation (four to six one-to-one physiotherapy sessions of tailored advice and prescribed home exercise over three months), or self-directed rehabilitation (provision of advice and exercise materials that participants will use to manage their recovery independently). The primary outcome is participant-reported ankle-related symptoms and function six months after randomization, measured by the Olerud and Molander Ankle Score. Secondary outcomes at two, four, and six months measure health-related quality of life, pain, physical function, self-efficacy, exercise adherence, complications, and resource use. Due to the nature of the interventions, participants and intervention providers will be unblinded to treatment allocation.Aims
Methods