Introduction. Postvoid residualurine (PVR) can be an unknown chronic disorder, but it can also occur after surgery. A pilot-study initiated in Elective Surgery Center, Silkeborg led to collaboration with a urologist to develop a flowchart regarding treatment of
Aims. The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve diagnostic accuracy. The aim of the study was to further validate the effectiveness of
Abstract. Background. Cauda equina syndrome (CES) is a rare serious condition that, if missed at initial presentation, can lead to serious disability. Early diagnosis is crucial for a favourable outcome. Few studies included urodynamic test and measurement of post-void residual urine (PVR) as an adjunct screening tool for acute CES before proceeding to MRI scan, yet there are differences in the cut-off point as a threshold volume to be considered as a red flag for doing MRI amongst these studies. Aim. Meta-analysis and systematic review of literature that included
Introduction. Pixel Value Ratio (PVR) is a radiographic measure of the relative density of the regenerate to the adjacent bone. This has been reported as an objective criterion for regenerate healing and a guide for when to allow full weight bearing (FWB) in lengthening with intramedullary telescopic nails. The threshold for which magnitude of
Aims. Diagnosis of cauda equina syndrome (CES) remains difficult; clinical assessment has low accuracy in reliably predicting MRI compression of the cauda equina (CE). This prospective study tests the usefulness of ultrasound bladder scans as an adjunct for diagnosing CES. Methods. A total of 260 patients with suspected CES were referred to a tertiary spinal unit over a 16-month period. All were assessed by Board-eligible spinal surgeons and had transabdominal ultrasound bladder scans for pre- and post-voiding residual (PVR) volume measurements before lumbosacral MRI. Results. The study confirms the low predictive value of ‘red flag’ symptoms and signs. Of note ‘bilateral sciatica’ had a sensitivity of 32.4%, and a positive predictive value (PPV) of only 17.2%, and negative predictive value (NPV) 88.3%. Use of a
Background. Comminuted fractures involving the tibia are associated with a high level of complications including delayed healing and non-union, in conjunction with dramatically increased healthcare costs. Certain clinicians utilise a Pixel Value Ratio (PRV) of 1 to indicate such fracture healing. The subjectivity of this method has led to mixed outcomes including regenerate fracture. The poor prognosis of complex load bearing fractures is accentuated by the fact that no quantitative gold standard currently exists to which clinicians can reference regarding the definition of a healed fracture. The aim of the current study is to use patient specific finite element analysis of complex tibial fractures treated with Ilizarov frames to demonstrate callus maturation and to determine the optimum frame removal time. Methods. 3 patients (2 males, 1 female) were analysed following presentation with complex tibial fractures treated with Ilizarov frames. Patient specific computational analysis was performed according to radiographic data, incorporating maturing material properties to analyse the callus response to weight bearing over the healing timeframe. Computational results were compared to the
Purpose. There are concerns with regard to the physiological effects of reamed intramedullary femoral fracture stabilisation in patients who have received a pulmonary injury. This large animal study used invasive monitoring techniques to obtain sensitive cardiopulmonary measurements and compared the responses to Early Total Care (reamed intramedullary femoral fracture fixation) to Damage Control Orthopaedics (external fixation), after the induction of acute lung injury. We hypothesised a greater cardiopulmonary response to intramedullary fracture fixation. Method. Acute lung injury (PaO2/FiO2 < 200 mmHg) was induced in 12 invasively monitored and terminally anaesthetised male sheep via the infusion of oleic acid into the right atrium. Each animal underwent surgical femoral osteotomy and fixation with either reamed intramedullary (n=6) or external fixation (n=6). Simultaneous haemodynamic and arterial blood-gas measurements were recorded at baseline and at 5, 30 and 60 minutes after fracture stabilisation. Results. The mean (S.E.) PaO2/FiO2 fell significantly (p<0.05) from 359(37) to 107 (23) and 382 (33) to 128 (18) in the externally fixated and intramedullary nailed groups respectively as a result of the acute lung injury. The further combined effect of surgical osteotomy and subsequent fracture fixation produced a mean (+/− S.E.) PaO2/FiO2 of 114 (21) and 113 (12), in the externally fixated and intramedullary nailed groups respectively, immediately after surgery. This was not significantly different either within or between groups. Similarly the pulmonary vascular resistance (PVR) measured at 4.7 (0.9) and 4.2 (0.5) in the externally fixated and intramedullary nailed groups respectively after lung injury changed to 4.9 (0.7) and 4.3 (0.6) after surgical osteotomy and subsequent fracture fixation which, again was not significantly different either within or between groups. No significant difference in either PaO2/FiO2 or
Lengthening of the humerus is now an established
technique. We compared the complications of humeral lengthening
with those of femoral lengthening and investigated whether or not
the callus formation in the humerus proceeds at a higher rate than
that in the femur. A total of 24 humeral and 24 femoral lengthenings
were performed on 12 patients with achondroplasia. We measured the
pixel value ratio (PVR) of the lengthened area on radiographs and
each radiograph was analysed for the shape, type and density of
the callus. The quality of life (QOL) of the patients after humeral
lengthening was compared with that prior to surgery. The complication
rate per segment of humerus and femur was 0.87% and 1.37%, respectively.
In the humerus the
Aims: There are concerns over the physiological effects of intramedullary femoral fracture stabilisation in patients with pulmonary injury. This large animal study used invasive monitoring to obtain sensitive cardiopulmonary measurements and compared the responses of ‘Early Total Care’ (intramedullary fracture fixation) and ‘Damage Control’ (external fixation), after the induction of lung injury. Methods: Acute lung injury (PaO2/FiO2 <
200 mmHg) was induced in 12 invasively monitored and terminally anaesthetised sheep via oleic acid infusion into the right atrium. Each animal underwent surgical femoral osteotomy and fixation with either reamed intramedullary (n=6) or external fixation (n=6). Haemodynamic and arterial blood-gas measurements were recorded at baseline, 5, 30 and 60 minutes after fracture stabilisation. Results: The mean (+/− S.E.) PaO2/FiO2 fell significantly (p<
0.05) from 401 (+/− 39) to 103 (+/− 35) and 425 (+/− 27) to 122 (+/− 21) in the externally fixated and intramedullary nailed groups respectively after acute lung injury. The further combined effect of surgical osteotomy and fracture fixation produced a mean (+/− S.E.) PaO2/FiO2 of 98 (+/− 21) and 114 (+/− 18), in the externally fixated and intramedullary nailed groups immediately after surgery. This was not significantly different within or between groups. Similarly the pulmonary vascular resistance (PVR) measured at 5.8 (+/− 0.8) and 4.8 (+/− 0.7) after lung injury in the externally fixated and intramedullary nailed groups changed to 5.7 (+/− 0.5) and 4.0 (+/− 0.7) after surgical osteotomy and fracture fixation (no significant difference within or between groups). The PaO2/FiO2 or
Introduction Polymethylmethacrylate (PMMA) has been widely used in orthopaedic procedures for fixation of joint replacements or enhancing the fixation of implants. However, the use of PMMA has been associated with cardiovascular deterioration and even death. More recently, PMMA has also been used for augmenting osteoporotic vertebral bodies which have fractured or are at risk of fracture. The main complication is PMMA leakage into adjacent structures. Transient hypotension and fatal fat embolism (FE) have also been reported. The pathomechanism of cardiovascular deterioration after the injection of PMMA (i.e. FE) remains a highly controversial subject. The exact role of PMMA in the development of FE remains unclear. The aim of the present study was to elucidate the acute effects of injecting PMMA compared with bone wax into vertebral bodies on the cardiovascular system using an established animal model for vertebroplasty (VP) (Aebli, N, et al. Spine. 2002). Methods In 8 skeletally mature mixed-bred ewes (2–4 years) 6.0ml PMMA (CMW3-Depuy) or bone wax (Bone Wax, Ethicon) were injected unilaterally, through an open approach into the L1 &
L2 pedicles. Blood pressure, heart rate, and cardiac output were measured. Results The major difference between the cardiovascular response of the PMMA and that of the bone wax group was the recovery in Pulmonary Artery Pressure (PAP) and Pulmonary Vascular Resistance (PVR). Three minutes post-injection, PAP had fully recovered to baseline values in the wax group. However in the PMMA group, PAP had only recovered by 52% after 3 min and fully recovered after 10 min. Discussion The augmentation of vertebral bodies resulted in transient cardiovascular changes regardless of the material used. However, the recovery of PAP and