Advertisement for orthosearch.org.uk
Results 1 - 20 of 515
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1485 - 1492
1 Dec 2024
Terek RM

Aims

The aim of the LightFix Trial was to evaluate the clinical outcomes for one year after the treatment of impending and completed pathological fractures of the humerus using the IlluminOss System (IS), and to analyze the performance of this device.

Methods

A total of 81 patients with an impending or completed pathological fracture were enrolled in a multicentre, open label single cohort study and treated with IS. Inclusion criteria were visual analogue scale (VAS) Pain Scores > 60 mm/100 mm and Mirels’ Score ≥ 8. VAS pain, Musculoskeletal Tumor Society (MSTS) Upper Limb Function, and The European Organization for Research and Treatment of Cancer QoL Group Bone Metastases Module (QLQ-BM22) scores were all normalized to 100, and radiographs were obtained at baseline and at 14, 30, 90, 180, and 360 days postoperatively.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 682 - 693
26 Nov 2024
Wahl P Heuberger R Pascucci A Imwinkelried T Fürstner M Icken N Schläppi M Pourzal R Gautier E

Aims

Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands.

Methods

Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 12 - 12
22 Nov 2024
Wang L Trampuz A Zhang X
Full Access

Aim. Treatment of prosthetic joint infection (PJI) by systemic administration of high doses of long-term antibiotics often proves ineffective, causing severe side effects. Thus, we presented the phage Sb-1, which coding extracellular polymeric substances (EPS) degradation depolymerases, conjugated with rifampicin-loaded liposomes (Lip-RIF@Phage) by bio-orthogonal functionalization strategy to target biofilm (Figure1). Method. Methicillin-resistant Staphylococcus aureus (MRSA) biofilm was grown on porous glass beads for 24 h in vitro. After the biofilm formation, beads were exposed to 0.9% saline, then sonication. Quantitative and qualitative biofilm analyses were performed by colony counting, scanning electron microscopy and isothermal microcalorimetry. A rat model of total knee arthroplasty infected with the bioluminescent MRSA strain was developed as the PJI model to evaluate the efficacy of Lip-RIF@Phage anti-biofilm therapy in vivo, then the creatinine, alanine transaminase, and aspartate transaminase values were evaluated throughout the entire treatment process. Results. After treatment with Lip-RIF@Phage, no bacterial colonies were observed, consistent with findings from scanning electron microscopy. Similarly, isothermal microcalorimetry revealed no detectable heat following Lip-RIF@Phage treatment, aligning with these observations. In vivo experiments demonstrated a significant reduction in biofilm cell load compared to all other tested conditions, with no evidence of systemic toxicity on renal and liver functions attributed to Lip-RIF@Phage. Conclusions. The innovative depolymerase-phagobot nanosystem (Lip-RIF@Phage) exhibits remarkable efficacy in completely eliminating biofilm cells in vitro. It serves as an excellent carrier for antibiotic delivery, enhancing antibiotic penetration through biofilms and improving biofilm eradication efficacy. Furthermore, it enables personalized treatment strategies against biofilm-associated multidrug-resistant (MDR) infections by maximizing the effectiveness of any remaining sensitive antibiotics. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 116 - 116
14 Nov 2024
Varga P Cameron P Hutchinson D Malkoch M Schwarzenberg P
Full Access

Introduction. When designing a new osteosynthesis device, the biomechanical competence must be evaluated with respect to the acting loads. In a previous study, the loads on the proximal phalanx during rehabilitation exercises were calculated. This study aimed to assess the safety of a novel customizable osteosynthesis device compared to those loads to determine when failure would occur. Method. Forty proximal phalanges were dissected from skeletally mature female sheep and divided into four testing groups. A custom 3D printed cutting and drilling guide was used to create a reduced osteotomy and pilot holes to insert four 1.5 mm cortical screws. A novel light-curable polymer composite was used to fixate the bones with an in situ fixation patch. The constructs were tested in cyclic four-point bending in a bioreactor with ringer solution at 37°C with a valley load of 2 N. Four groups (N = 10) had increasing peak loads based on varying safety factors relative to the physiological loading (G1:100x, G2:150x, G3:175x, G4:250x). Each specimen was tested for 12,600 cycles (6 weeks of rehabilitation) or until failure occurred. After the test the thickness of the patch was measured with digital calipers and data analysis was performed in Python and R. Result. All samples survived in G1, and all failed in G4. G2 and G3 had 1 and 8 failures, respectively. There was no significant difference in patch thickness in all survivor samples against failures (p = 0.131), however, there was a significant difference in the displacement amplitude in the final cycle (0.072 mm vs. 0.15 mm; p < 0.001). Conclusion. This study found the survival and failure limits of a novel osteosynthesis device as a function of physiological loading. These results indicate that such fixations could withstand 100x the loading for typical non-weightbearing rehabilitation. Further studies are needed to confirm the safety for other conditions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 26 - 26
14 Nov 2024
Tiplady S Heinemann C Kruppke B Manda K Clarke S Lennon A Larrañeta E Buchanan F
Full Access

Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. Method. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human bone marrow derived mesenchymal stem cells (hMSCs) from osteoporotic and control donors (monoculture) and hMSCs & human monocytes (hMCs) (Co culture). Outcome measures were biochemical assays, PCR, and cell imaging. Cells were cultured on scaffolds that had been pre-degraded for six weeks at 47°C prior to drying and gamma sterilisation. Result. 3D printed scaffolds were successfully produced by FFF. All groups in the study supported cell attachment onto the scaffolds, producing extracellular matrices as well as evidence of osteoclast cell structures. Osteoporotic cells increased CTSK activity and CAII activity and decreased ALP activity compared to controls. In control cultures, the addition of bTCP and bTCP/Sr to the PLGA reduced TRAP5b, CAII and ALP activity compared to PLGA alone. The addition of Sr did not show any differences between donors. Conclusion. This study details suitability of 3D printed polymer scaffolds for use in bone tissue applications. Both composite and pure polymer scaffolds promote osteogenesis in vitro. The introduction of ceramic filler and ion doping does not beneficially effect osteogenic potential and can reduce its ability compared to pure polymer. This study suggests the behaviour of control and osteoporotic cells are different and that osteoporotic cells are more prone to bone resorption. Therefore, it is important to design bone scaffolds that are specific to the patient as well as to the region of fracture


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 100 - 100
14 Nov 2024
Castorena JG Riester R Ornelas MG Guilak F Danalache M
Full Access

Introduction. Piezo1 is a mechanosensitive Ca. 2+. ion channel that has been shown to transduce hyper-physiologic mechanical loads in chondrocytes. In osteoarthritic cartilage, Piezo1 expression was shown to be upregulated by interleukin-1 alpha (IL-1α) and resulted in altered calcium dynamics and actin cytoskeleton rarefication. Together these studies highlight the importance of Piezo1 channels during joint injury. However, the mechanism by which Piezo1 regulates chondrocyte physiology and mechanotransduction during homeostasis is still largely unknown. In this study, we investigate the impact of Piezo1 activation on nuclear mechanics and chromatin methylation state. Methods. Porcine chondrocytes (n=3-5 pigs) were treated with Yoda1, a Piezo1-specific agonist, for either 2, 5, 15 or 180 minutes. To characterize chromatin state, we monitored the abundance of a chromatin methylation marker (H3K9Me3) using immunofluorescence (IF). Atomic force microscopy (AFM, 25 nm cantilever) was employed to quantify the nuclear elastic modulus (NEM) of individual cell nuclei. To explore the interplay between cytoskeletal dynamics and nuclear mechanics, chondrocytes were treated with Latrunculin A (LatA), an actin polymerization inhibitor. Result. IF experiments showed chromatin methylation was the lowest 2 minutes post Yoda1 activation of Piezo1 (p=0.027). Additionally, we found that 2 or 5 minutes post-Piezo1 activation resulted in a significantly lower NEM when compared to the control (p<0.00001). The observed decrease in NEM at 2 and 5 minutes post-Piezo1 activation was not observed after knocking down Piezo1 (p>0.99). In LatA treated cells, the elevated NEM persisted even after Piezo1 activation with Yoda1 (p>0.75). Conclusion. These findings illuminate the mechanism by which Piezo1 activation and actin remodeling regulate transient mechanotransduction during homeostasis. Further research into the transient decrease in nuclear stiffness and chromatin methylation observed during the initial 5 minutes of Piezo1-induced Ca2+ signaling, may contribute to a better understanding of the role of Piezo1 channels in joint injury and development of therapeutic interventions for osteoarthritis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 109 - 109
14 Nov 2024
Weiden GVD Egmond NV Karperien M Both S Mastbergen S Emans P Caron J Custers R
Full Access

Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or trochlear groove (mean size±SD, 1.2±0.4cm2). No signs of an adverse foreign tissue reaction or serious adverse events were recorded within the safety cohort. At final follow-up mean KOOS±SD was 66.9±23.5, mean NRS resting±SD was 1.3±1.9, NRS activity±SD was 3.8±2.9 and mean SF-36±SD was 72.0±10.9. ΔKOOS was 21. One patient sustained new knee trauma prior to final follow-up, affecting final scores considerably. When excluded, ΔKOOS was 24(n=9). Conclusion. These promising initial findings provide a solid basis for continuation and expansion of this unique cartilage treatment. The MIC of 10 was surpassed. Though, results should be interpreted cautiously as they are based solely on preliminary data of the first 10 patients. Acknowledgements. Study is sponsored by Hy2Care, producer of the CartRevive®(dextran-tyramine) Hydrogel implant


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Aims

This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs).

Methods

A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 82 - 88
1 May 2024
Villa JM Rajschmir K Hosseinzadeh S Manrique-Succar J Grieco P Higuera-Rueda CA Riesgo AM

Aims

Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation.

Methods

A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707).


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 435 - 441
1 May 2024
Angelomenos V Mohaddes M Kärrholm J Malchau H Shareghi B Itayem R

Aims

Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered femoral stem fixed with either Refobacin Bone Cement R or Palacos R + G bone cement. Repeated radiostereometric analysis was used to measure migration of the femoral head centre. The secondary aims were evaluation of cement mantle, stem positioning, and patient-reported outcome measures.

Methods

Overall, 75 patients were included in the study and 71 were available at two years postoperatively. Prior to surgery, they were randomized to one of the three combinations studied: Palacos cement with use of the Optivac mixing system, Refobacin with use of the Optivac system, and Refobacin with use of the Optipac system. Cemented MS30 stems and cemented Exceed acetabular components were used in all hips. Postoperative radiographs were used to assess the quality of the cement mantle according to Barrack et al, and the position and migration of the femoral stem. Harris Hip Score, Oxford Hip Score, Forgotten Joint Score, and University of California, Los Angeles Activity Scale were collected.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims

Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone.

Methods

S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated. Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis. These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE. Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 90 - 90
2 Jan 2024
Almeida A Miranda M Crowe L Akbar M Rodrigues M Millar N Gomes M
Full Access

MicroRNA (miR) delivery to regulate chronic inflammation hold extraordinary promise, with new therapeutic possibilities emanating from their ability to fine-tune multiple target gene regulation pathways which is an important factor in controlling aberrant inflammatory reactions in complex multifactorial disease. However, several hurdles have prevented advancements in miR-based therapies. These include off-target effects of miRs, limited trafficking, and inefficient delivery. We propose a magnetically guided nanocarrier to transport therapeutically relevant miRs to assist self- resolving inflammation processes at injury sites and reduce the impact of chronic inflammation- related diseases such as tendinopathies. The high prevalence, significant socio-economic burden and increasing recognition of dysregulated immune mediated pathways in tendon disease provide a compelling rationale for exploring inflammation-targeting strategies as novel treatments in this condition. By combining cationic polymers, miR species (e.g., miR 29a, miR155 antagonist), and magnetic nanoparticles in the form of magnetoplexes with highly efficient magnetofection procedures, we developed inexpensive, easy-to-fabricate, and biocompatible systems with competent miR-binding and fast cellular uptake into different types of human cells, namely macrophages and tendon-derived cells. The system was shown to be cell-compatible and to successfully modulate the expression and production of inflammatory markers in tendon cells, with evidence of functional pro-healing changes in immune cell phenotypes. Hence, magnetoplexes represent a simple, safe, and non-viral nanoplatform that enables contactless miR delivery and high- precision control to reprogram cell profiles toward improved pro-regenerative environments. Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM. RES Hub (Norte-01-0145-FEDER-022190)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 66 - 66
2 Jan 2024
Nikody M Li J Koper D Balmayor E Habibovic P Moroni L
Full Access

Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic bone substitutes focus on improving their osteoinductive properties. Whereas osteoinductivity has been demonstrated with ceramics, it is still a challenge in case of polymeric composites. One of the approaches to improve the regenerative properties of biomaterials, without changing their synthetic character, is the addition of inorganic ions with known osteogenic and angiogenic properties. We have previously reported that the use of a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50% beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating of the TCP particles can enhance the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) (3). To further support the regenerative properties of these scaffolds, inorganic ions with known angiogenic properties, copper or cobalt, were added to the coating solution. β-TCP particles were immersed in a zinc and copper or zinc and cobalt solution with a concentration of 15 or 45 mM. 3D porous scaffolds composed of 1000PEOT70PBT30 and pure or coated β-TCP were additively manufactured by 3D fibre deposition. The osteogenic and angiogenic properties of the fabricated scaffolds were tested in vitro through culture with hMSCs and human umbilical vein endothelial cells, respectively. The materials were further evaluated through ectopic implantation in an in vivo mini-pig model. The early expression of relevant osteogenic gene markers (collagen-1, osteocalcin) of hMSCs was upregulated in the presence of lower concentration of inorganic ions. Further analysis will focus on the evaluation of ectopic bone formation and vascularisation of these scaffolds after implantation in a mini-pig ectopic intramuscular model


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 121 - 121
2 Jan 2024
Liepe K Baehr M
Full Access

After knee replacement, therapy resistant, chronic synovitis is common and leads to effusion and pain. A cohort of 55 patients with 57 knee replacements and chronic synovitis underwent radiosynoviorthesis. In summary, 101 joints were treated using 182±9 MBq of 90Y-citrate. The number of radiosynoviorthesis ranged from 1 to 4 (53%, 21%, 23%, and 4%). Every patient received a 99mTc-MDP scintigraphy before and three months after every radiosynoviorthesis. Follow-up ranged from 5.7 to 86.7 months. For qualitative analysis, an four steps scoring was used (0 = no response or worsening, 1 = slight, 2 = good, 3 = excellent response). For quantification, the uptake was determined within the 99mTc-MDP scintigraphy soft tissue phase before and after therapy. At the end of long-term follow-up 27% of patients have an excellent, 24% good, 30% slight and 20% no response. The duration of response was 7.5±8.3 months (maximum 27 months). In repeated treatment, the effect after the first therapy was lesser than in patients who received a single treatment in total. However, three months after the last radiosynoviorthesis, patients with repeated treatment showed a similar effectiveness than single treated patients. At the end of long-term follow-up, patients with repeated radiosynoviorthesis had a higher effectiveness at similar duration response. In the 99mTc-MDP scan 65% of patients showed a reduction of uptake. When comparing subjective and objective response 78% of patients showed a concordance in both, symptoms and scintigraphy. Pilot histological analysis revealed that the synovitis is triggered by small plastic particles. Radiosynoviorthesis is effective in patients with knee replacement and chronic synovitis. It shows good subjective and objective response rates and long response duration. Repeated treatment leads to a stronger long-time response. The chronic synovitis is caused by plastic particles, which result from the abrasion of the polymeric inlay of endoprothesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 64 - 64
2 Jan 2024
Rodrigues M Almeida A Miranda M Vinhas A Gonçalves AI Gomes M
Full Access

Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release. Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions. Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM. RES Hub (Norte-01-0145-FEDER-022190)