Advertisement for orthosearch.org.uk
Results 1 - 20 of 895
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims

The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis.

Methods

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 764 - 778
12 Dec 2024
Huang Q Zhuo Y Duan Z Long Y Wang J Zhang Z Fan S Huang Y Deng K Xin H

Aims

Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application.

Methods

In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 750 - 763
11 Dec 2024
Xie C Gong J Zheng C Zhang J Gao J Tian C Guo X Dai S Gao T

Aims

This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.

Methods

The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article: Bone Joint Res 2024;13(12):725–740


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 28 - 28
22 Nov 2024
Boyce S Nichol T Smith T Le Maitre C
Full Access

Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology, collagen, and calcium production by primary bovine osteoblasts cultured upon antibiotic sol-gel surfaces were examined, and cytotoxicity evaluated using Alamar blue staining and lactate dehydrogenase assays. Concentrations of silica, calcium and phosphorus compounds within the cell layer cultured on sol-gel coatings and concentrations eluted into media, were quantified using ICP-OES. Furthermore, cellular phenotype was assessed using alkaline phosphatase activity with time in culture. Results. Low antibiotic concentrations within sol-gel had an inhibitory effect on clinically relevant biofilm growth, for example 0.8 mg ml. -1. tobramycin inhibited clinically isolated S. aureus (MRSA) growth with an 8-log reduction in viable colony forming units. There was no significant difference in metabolic activity between untreated and sol-gel exposed primary bovine osteoblasts in elution-based assays. Reduction (2-fold) in metabolic activity in direct contact assays after 48 hours exposure was likely to be due to increased osteoinduction, whereas no impact upon cell proliferation were observed (p=0.92 at 14 days culture). The morphology of primary osteoblasts was unaffected by culture on sol-gel coatings and collagen production was maintained. Calcium containing nodule production within bovine osteoblastic cells was increased 16-fold after 14 days culture upon sol-gel. Conclusions. The ultrathin sol-gel coating showed low cytotoxicity, strong biofilm reducing activity and antimicrobial activity, which was comparable to antibiotics alone, demonstrating that sol-gel delivery of antibiotics could provide local antimicrobial effects to inhibit PJI growth without the need for bone cement. Future work will develop and evaluate sol-gel performance in an ex vivo explant bone infection model which will reduce the need for animal experimentation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 3 - 3
22 Nov 2024
Samuel BJ Horbert V Jin Z Brauer DS Matziolis G
Full Access

Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate osteoblasts proliferation and prevent microbial adhesion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 59 - 59
22 Nov 2024
Peterlin AA Gottlieb H Birch JM Jensen LK
Full Access

Aim. The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis. Methods. In pigs, a tibial implant cavity was created and inoculated with 10. 4. CFU of Staphylococcus aureus: Group A (n=7). Group B (n=7); + 1cm. 3. spongostan into the cavity. Group C (n=4); + systemic Denosumab treatment. Spongostan was used as an avascular material to support bacterial growth and thus increase the inflammatory response. Denosumab treatment was administrated to suppress osteoclast activity by RANKL inhibition (as in osteoporotic patients). The volume of osteolysis was accessed by CT scans. Immunohistochemistry with antibodies towards Cathepsin K was used to identify osteoclasts within the bone lesions. Briefly, the number of Cathepsin K positive cells, i.e., both precursors and bone resorbing osteoclasts, respectively, were counted in 10 high power fields (400x). In total, 50 bone infection patients were included (Herlev Hospital). From each patient five parried samples were taken for histology and microbiology, respectively. Histopathology, CT osteolysis volume estimation, and molecular expression of osteoclasts and inflammatory markers are ongoing. One FRI patient was osteoporotic and treated with Denosumab for 6 years. Results. All pigs were confirmed infected in the implant cavity. The volume (2.41 ± 1.29cm. 3. ) of osteolysis was significantly increased in the spongostan group in comparison to Group A (1.24 ± 0.59 cm. 3. ) (p=0.04). Thereby, the spongostan group had bacteria deeper into the bone from the inoculation point. Sufficient Denosumab treatment, i.e. reduced serum Ca was seen in 3 pigs. None of the Denosumab treated pigs showed reduced osteolysis in comparison to Group A (1.42 ± 0.63 cm. 3. ). The Cathepsin K score of Group C was 17 (15-23 IQR) of precursor osteoclasts and 2 (0-2 IQR) of osteoclasts in Howship lacunae. The Denosumab treated patient showed substantial osteolysis and histological analysis confirmed acute inflammatory. Conclusions. Application of spongostan, i.e., bacterial host optimization and massive inflammation promotes osteolysis and local bacterial dissemination. Osteoclast blocking with Denosumab showed no impact on osteolysis. Elucidation of the pathophysiology causing bone loss in osteomyelitis is fundamental. However, the widely accepted osteoclast-based theory might not be the only relevant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 49 - 49
14 Nov 2024
Chen YS Lian WS Lin Y Wang F
Full Access

Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development. Method. Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic media. Histone H3K27me3 levels and enrichment were investigated using immunoblotting and chromatin precipitation-PCR. Result. Serum a-KG levels in patients with osteoporosis were less than controls; and were correlated with T-scores of hips (R2 = 0.6471, P < 0.0001) and lumbar spine (R2 = 0.7235, P < 0.001) in osteoporosis (AUC = 0.9941, P < 0.001). a-KG supplement compromised a plethora of osteoporosis signs in ovariectomized or aged mice, including bone mass loss, trabecular bone microarchitecture deterioration, and mechanical strength loss. It elevated serum osteocalcin levels and decreased serum TRAP5b. a-KG preserved caclein-labelling bone formation and repressed osteoclast resorption. It reversed osteogenic differentiation of bone-marrow stromal cells and reduced osteoclast formation in ovariectomized mice. Mechanically, a-KG attenuated H3K27 hypermethylation and Runx2 transcription repression, improving mineralized matrix production in osteogenic cells. Conclusion. Decreased serum a-KG is correlated with human and murine osteoporosis. a-KG reverses bone loss by repressing histone methylation in osteoblasts. This study highlighted a-KG supplement as a new biochemical option for protecting osteoporosis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 89 - 89
14 Nov 2024
Quero LS Duch CE Vilaboa Díaz N Rey EG
Full Access

Introduction. The most frequent diagnosis in young adults undergoing total hip arthroplasty (THA) is osteonecrosis of the femoral head (ONFH), an evolving and disabling condition with an increasing prevalence worldwide. Treatment of ONFH remains a challenge mainly because of a lack of understanding of the disease's pathophysiological basis. This study investigated the biological processes that could be affected by ONFH by comparing the microstructure, histological characteristics and transcriptomic profile of trabecular bone from the femoral head (FH) and the intertrochanteric region (IT) of patients suffering from this condition. Method. A total of 18 patients with idiopathic ONFH undergoing THA in our institution were included. Trabecular bone explants were taken intraoperatively from the FH and the IT of patients. Bone microstructure was examined by micro-computed tomography (micro-CT). After bone sectioning, histological features were studied by hematoxylin and eosin staining. Differential gene expression was investigated using a microarray platform. Result. Micro-CT imaging showed higher trabecular separation and lower trabecular thickness and bone volume in trabecular bone from the FH than from the IT. Histological staining revealed that the number of osteoblasts on the bone surface and the percentage of empty lacunae were higher in trabecular bone from the FH. Transcriptome analysis identified a differential signature in trabecular bone from the FH compared to the IT. The gene ontology analyses of the genes overexpressed in trabecular bone from the FH revealed a range of enriched biological processes related to cell division and immune response. In contrast, most downregulated transcripts were involved in bone formation. Conclusion. This study identified changes in the microarchitecture, histological features and transcriptomic signature of trabecular bone from the FH of patients with idiopathic ONFH, which might underlie the pathophysiology of this condition. This work was supported by PI22/00939 grant from ISCIII-FEDER-MICINN-AES and Luis Alvarez grant from IdiPAZ


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 124 - 124
14 Nov 2024
Lin Y Lian W Chen Y Wang F
Full Access

Introduction. Osteoporosis accounts for a major risk factor of fracture-associated disability or premature death in the elderly. Enhancement of bone anabolism for slowing osteoporosis is highly demanding. Exerkine fibronectin type III domain containing 5 (FNDC5) regulates energy metabolism, inflammation, and aging. This study was aimed to investigate whether Fndc5 signaling in osteoblasts changed estrogen deficiency-mediated bone loss or microarchitecture deterioration. Method. Female osteoblast-specific Fndc5 transgenic mice (Fndc5Tg), which overexpressed Fndc5 under the control of key osteoblast marker osteocalcin promoter, were given bilateral ovariectomy to induce estrogen deficiency-mediated osteoporosis. Bone mass, microstructures, and biomechanical properties were quantified using μCT imaging and material testing. Dynamic bone formation was traced using fluorescence calcein. Osteogenic differentiation and adipocyte formation of bone-marrow mesenchymal cells were investigated using von Kossa staining and Nile red staining, respectively. Serum osteocalcin, CTX-1 and TRAP5b levels were quantified using designated ELISA kits. Mitochondrial respiration was investigated using Seahorse Extracellular Flux Analyzer. Result. Fndc5Tg mice developed relatively higher bone mass and microarchitecture than wild-type mice. Fndc5 overexpression attenuated the losses of bone mineral density and trabecular network, including trabecular volume, thickness, and trabecular number, and improved cortical thickness and porosity in ovariectomized mice. Gain of Fndc5 function preserved biomechanical characteristics (maximum load, breaking force, and energy), serum bone formation marker osteocalcin levels, and bone formation rate, whereas it reduced serum bone resorption makers CTX-1 and TRAP5b levels, osteoclast overburden, and marrow adiposis. In vitro, Fndc5 reversed the estrogen deficiency-mediated mineralized matrix underproduction and adipocyte formation of bone-marrow mesenchymal cells, and inhibited osteoclast formation in osteoporotic bone. Mechanistically, Fndc5 activated AMPK signaling, promoting mitochondrial respiration and ATP production to enhance osteoblastic activity. Conclusion. Fndc5 signaling exerted bone-protective actions delaying estrogen deficiency-mediated osteoporosis. This study highlighted a new molecular remedial option for osteoporosis development by manipulating Fndc5 functions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 9 - 9
14 Nov 2024
Enderami E Timmen M Stange R
Full Access

Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different collagens, proteoglycans, and growth factors produced by chondroprogenitor cells that differentiate from proliferating to hypertrophic chondrocytes. In vitro chondrocyte growth is challenging due to differences in behaviour between 2D and 3D cultures. Our aim is to establish a murine 3D spheroid culture method using chondrocytes to study the complex interaction of cells on the chondro-osseous border during enchondral ossification. Method. Primary chondrocytes were isolated from the knee of WT new-born mice and used to form 10,000 cell number spheroids. We used the ATDC5-chondrocyte cell line as an alternative cell type. Spheroids were observed for 7, 14, and 21 days before embedding in paraffin for slicing. Alcian blue staining was performed to identify proteoglycan positive areas to prove the formation of extracellular matrix in spheroids. Collagen type 2, and Collagen type X expression were analyzed via quantitative real-time PCR and immunohistochemistry. Result. Alcian blue staining showed increasing matrix formation from day 7 to day 14 and proliferative chondrocytes at early time points. Both cell types showed increasing mRNA expression of Collagen type 2 from day 7 to day 21. Collagen type X positive staining starting from day 14 on confirmed the development of hypertrophic stage of chondrocytes. ATDC5 cells exhibited a slower progression in chondrogenic differentiation compared to primary chondrocytes. Conclusion. In chondrocyte spheroids, we observed proceeding differentiation of chondrocytes reaching hypertrophic phase. Primary chondrocytes showed faster development than ATDC5 cell line. Overall, spheroid culture of chondrocytes could be a good basis to study the interaction of different cells types of the chondro-osseous border by combination of chondrocytes with e.g., endothelial cells and osteoblasts within the spheroid. Those organoid cultures might also help to reduce animal experiments in the future, by mimicking complex regeneration procedures like bone growth or fracture healing. DFG(German Research Foundation)


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process. Results. Mean callus volume was larger in the elastic fixation group (1,755 mm. 3. (standard error of the mean (SEM) 297)) than in the stiff fixation group (258 mm. 3. (SEM 65)). Pathological observation found that the expression levels of osterix (OSX), collagen, type I, alpha 1 (COL1α1), and alkaline phosphatase (ALP) in the callus of the elastic fixation group were higher than those of the stiff fixation group. The protein sequence of the callus revealed 199 DEPs, 124 of which were highly expressed in the elastic fixation group. In the in vitro study, it was observed that a stress of 200 g led to upregulation of thrombospondin 1 (THBS1) and osteoglycin (OGN) expression in bone marrow mesenchymal stem cells (BMSCs). Additionally, these genes were found to be upregulated during the osteogenic differentiation process of the BMSCs. Conclusion. Elastic fixation can promote fracture healing and osteoblast differentiation in callus, and the ability of elastic fixation to promote osteogenic differentiation of BMSCs may be achieved by upregulating genes such as THBS1 and OGN. Cite this article: Bone Joint Res 2024;13(10):559–572


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims

We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach.

Methods

We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1000 - 1007
1 Sep 2024
Gong T Lu M Sheng H Li Z Zhou Y Luo Y Min L Tu C

Aims

Endoprosthetic reconstruction following distal femur tumour resection has been widely advocated. In this paper, we present the design of an uncemented endoprosthesis system featuring a short, curved stem, with the goal of enhancing long-term survivorship and functional outcomes.

Methods

This study involved patients who underwent implantation of an uncemented distal femoral endoprosthesis with a short and curved stem between 2014 and 2019. Functional outcomes were assessed using the 1993 version of the Musculoskeletal Tumour Society (MSTS-93) score. Additionally, we quantified five types of complications and assessed osseointegration radiologically. The survivorship of the endoprosthesis was evaluated according to two endpoints. A total of 134 patients with a median age of 26 years (IQR 16 to 41) were included in our study. The median follow-up time was 61 months (IQR 56 to 76), and the median functional MSTS-93 was 83% (IQR 73 to 91) postoperatively.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.