Aim. To make an inoculum for induction of Implant-Associated Osteomyelitis (IAO) in pigs based on bacterial aggregates resembling those found on the human skin, i.e. aggregates of 5–15 µm with low metabolic activity. The aggregates were evaluated and compared to a standard planktonic bacterial inoculum. Method. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth for seven days. Subsequently, the culture was filtered through cell strainers with pore sizes of 15 µm and 5 µm, respectively. The fraction of 5–15 µm aggregates in the top of the 5 µm filter was collected as the aggregate-inoculum. The separation of aggregates into different size fractions was evaluated by light microscopy. The metabolism of the aggregate-inoculum and a standard overnight planktonic inoculum was evaluated with isothermal microcalorimetry. In total, six female minipigs were allocated into three groups (n=2), receiving different inoculums. Group A: overnight planktonic inoculum; 10. 4. CFU S. aureus (S54F9), Group B: seven days old 5–15 µm aggregate-inoculum; 10. 4. CFU S. aureus (S54F9), Group C: saline. All inoculums were placed in a pre-drilled implant cavity in the right tibia of the pig and a sterile stainless-steel implant was inserted. The pigs were euthanized seven days after surgery. Postmortem macroscopic pathology, microbiology, computed tomography and histopathology were performed. Results. The separation of aggregates into different size fractions was done successfully by the filtering method. Isothermal microcalorimetry showed, a delayed Time-to-peak metabolic activity of the aggregate-inoculum compared to the planktonic inoculum. S. aureus was isolated from subcutis, bone and implants from all
Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the
Aim. Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge.
The Masquelet or induced membrane technique (IMT) is a two-stage surgical procedure used for the treatment of segmental bone defects. In this technique, the defect is first filled with a polymethyl methacrylate (PMMA) spacer, which triggers the formation of a membrane that will encapsulate the defect. During the second surgery, the spacer is carefully removed and replaced by autologous bone graft while preserving the membrane. This membrane is vascularized, contains growth factors, and provides mechanical stability to the graft, all of which are assumed to prevent graft resorption and promote bone healing. The technique is gaining in popularity and several variations have been introduced in the clinical practice. For instance, orthopaedic surgeons now often include antibiotics in the spacer to treat or prevent infection. However, the consequences of this approach on the properties of the induce membrane are not fully understood. Accordingly, in a small
Aim. A gentamicin-eluting biocomposite consisting of hydroxyapatite and calcium sulfate. 1. can provide effective dead space management in chronic osteomyelitis. However, radiographic follow-up after implantation of this novel material has consistently shown evidence of several unique imaging features previously not described with other comparable bone graft substitutes. Conclusive interpretation of these newly described imaging features is difficult as long term follow-up and histological correlation is not yet available. The aim of this study was to establish a large
Background. The Robotic Spinal Surgery System (RSSS) is a robot system designed for pedicle screw insertion containing image based navigation system, trajectory planning system and force state recognition system. The special force state recognition system can guarantee the safety during the operation. The RSSS is helpful in pedicle screw insertion surgery and it will be applied in clinic in the near future. In this study, we evaluated the accuracy and safety of RSSS in an
Ten percent of fractures end in delayed or non-union. NSAIDs have been linked to an inhibitory action on fracture repair for three decades yet the mechanism of action remains to be elucidated. Cancer research has identified that NSAIDs impede cell proliferation by inhibiting angiogenesis. It is proposed that a similar mechanism occurs in the induction of NSAID induced non-union. We have investigated this hypothesis in a randomised placebo control trial of the NSAID rofecoxib using a murine femoral fracture. All
Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation. In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head. Materials and Methods. Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved.
Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large
Aim. A gentamicin-eluting biocomposite consisting of hydroxyapatite (HA) and calcium sulphate (CaS)*1 can provide effective dead space management and bone formation in chronic osteomyelitis. However, radiographic follow-up after implantation of this biomaterial has shown imaging features previously not described with other comparable bone graft substitutes. Last year we presented preliminary results with a follow-up of 6 months. Now we present the radiographic, µCT and histological one-year follow-up of the critical-size bone defect model in sheep. The aim of this study was to simulate the clinical situation in a large
Historically human and
Transverse pin femoral fixation of bone-patella tendon-bone (BPTB) in ACL reconstruction has been widely applied during the last decades. Aim of our study is to confront two different system of transverse femoral fixation for BPTB graft: Transfix BTB (Arthrex) and BioTransfix T3 (Arthrex). The main differences between these two system are the diameter (3.0 mm Transfix BTB and 3.5 mm BioTransfix T3), and section (Transfix BTB is cannulated). Surgical technique adopts the same transverse vectorial guide but different guide sleeves. 30 fresh-frozen porcine knees (mean age 2.2 years) were assigned to the two groups randomisedly. the patellar bone block and tendon were harvested using the same size in all specimens (10mm × 25 mm, 10 mm). Zwick-Roell z010 tension/compression device with bone clamps, was used for the study:. Cyclic test (1000 cycles, 0.5 Hz, 50–250 N/cycle, 100 cycles of preload). Final pull-out test (1 mm/s). Failure analysis. CT scan and densitometry. Any implant didn't fail during cyclic test. The elongation average was 1.85±0.63 for Transfix BTB and 1.69±0.87 for BioTransfix T3. Pull-out test showed very similar values in terms of Ultimate Strength Failure (USF), Stiffness at USF, and Stiffness:. The failure mode was bone plug fracture (12 for Transfix BTB and 13 for BioTransfix T3) and tendon failure (3 for Transfix BTB and 2 for BioTransfix T3). The post-test CT scan showed any failure of the fixation devices and the correct position inside the femoral half-tunnel. The mean bone density of porcine femora was comparable to young human femora (1.12±0.31 BMD). Both systems showed a similar behaviour in terms of USF, Stiffness, Cyclic load, method of failure and other biomechanical parameters. The reproducibility of surgical technique, the mechanical strength and endurance of the systems suggest two valid options for ACL reconstruction with BPTB even if in-vivo studies are necessary to confirm the
Purpose. Nucleus pulposus (NP) replacements represent a less invasive alternative for treatment of early stage degenerative disc disease (DDD). Hydrogel based NP replacements are of particular interest as they can be injected/implanted using minimally invasive surgical (MIS) techniques to re-establish mechanical integrity and as a scaffold for regeneration. A thiol-modified hyaluronan elastin-like polypeptide (TMHA/EP) hydrogel crosslinked using polyethylene diacrylate has shown promise as a potential NP replacement for DDD in vitro. This study aims to assess the mechanical properties of this hydrogel when injected into an induced early stage DDD porcine model and to determine the optimal injection method for delivery. It is hypothesized that minimally invasive injection of the TMHA/EP material can restore mechanical behaviour of spinal motion segments in early stage DDD. Method. Intervertebral disc (IVD) degeneration was enzymatically induced in L2-L3 and L4-L5 lumbar levels in 10 Yorkshire boars using chondroitinase ABC (n=20 discs). An additional three
Purpose. There are concerns with regard to the physiological effects of reamed intramedullary femoral fracture stabilisation in patients who have received a pulmonary injury. This large
Adipose derived stem cells have been shown to enhance both wound and bone healing. The stem cells are harvested, purified, cultured and the viability assessed in order to provide adequate cellular yield. The isolation process requires trained laboratory staff, intensive procedures utilizing multiple purification solutions and expensive equipment for culturing and interpretation of viability of the isolated stem cells. The aim of the study was to investigate the effect of simple lipo-aspirate on wound and bone healing. This is a prospective, interventional study to investigate the effect of adipocyte extract on wound and bone healing. 9 Young, healthy, large white female pigs were used in the study. Fat was harvested using standard liposuction technique and injected around the defects created. Skin defects were evaluated for secondary wound healing macroscopically and histologically. 3 pigs were used in a pilot study to evaluate the possibility of investigating the effects of lipo-aspirate in bone defects.Purpose
Methodology
Many surgeons are familiar with the audible change in the sound pitch while hammering a rasp in a long bone during surgeries like Hip Arthroplasty. We have developed a hypothesis indicating that there is a relationship between that sound change and the development of micro-fracture and subsequently full fracture. An experiment using porcine femur bone performed by attaching a bone conduction microphone to the distal part of the bone while hammering a rasps of different sizes through the medullary canal till the point where a fracture developed. The transduce sound resonances created in the bone during rasping are converted to an analogue electrical signals that were sent to a Zoom H4n handheld recording device which recorded the signal to a disk. The recorded signals subsequently were analysed using Matlab software and a spectrum analyzer using Fast Fourier Transforms (FFT).Introduction
Methods
Self-locking button-like fixation devices for ACL reconstruction are attracting knee surgeons' attention due to promising technical advantages: complete filling of the tunnel with graft, anatomic reconstruction (AM portal), fixation achievement even when a short tunnel is reamed, opportunity of graft re-tensioning after tibial fixation and/or cyclic load. We compared two similar devices (TightRope vs ToggleLocZL) 20 fresh-frozen porcine femurs (mean age 2.1 years) were assigned to the two groups by randomization. Hamstrings with 9 mm of diameter were obtained using bovine tendons that show the same biomechanic behaviour of human hamstrings. Femoral tunnel was created by AM portal technique (anatomic position). Zwick-Roell z010 tension/compression device with bone and tendon clamps, was used for the study: Cyclic test (1000 cycles, 0.5 Hz, 50–250 N/cycle, 50 cycles of preload at 10–80 N/cycle) Final pull-out test (1 mm/s) Failure analysis CT scan and densitometry Any implant didn't fail during cyclic test. The elongation average was 2.85±1.63 for ToggleLoc and 2.71±.85 for TightRope (P>0.05). Pull-out test showed different values in terms of Ultimate Strength Failure (USF), Stiffness at USF, and Stiffness: The failure mode was: The mean method of failure was the fracture of the cortical bone of the femoral condyle, for both groups. But if we extrapolate the USF the difference was favourable(P<0.05) for TightRope (707.83 N) than ToggleLoc (580.16). The mean bone density of porcine femora was comparable to young human femora (1.12±0.31 BMD) The reproducibility of surgical technique, the mechanical strength and endurance of the systems suggest two valid options for ACL reconstruction with hamstring. ToggleLoc showed worse results due to the sharp squared edges of the button.
In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an
Aim. To provide proof of concept in an in vivo