Advertisement for orthosearch.org.uk
Results 1 - 20 of 208
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 21 - 21
24 Nov 2023
Hartmann KT Nielsen RL Mikkelsen F Ingmer H Kvich LA Aalbaek B Odgaard A Jensen HE Lichtenberg M Bjarnsholt T Jensen LK
Full Access

Aim. To make an inoculum for induction of Implant-Associated Osteomyelitis (IAO) in pigs based on bacterial aggregates resembling those found on the human skin, i.e. aggregates of 5–15 µm with low metabolic activity. The aggregates were evaluated and compared to a standard planktonic bacterial inoculum. Method. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth for seven days. Subsequently, the culture was filtered through cell strainers with pore sizes of 15 µm and 5 µm, respectively. The fraction of 5–15 µm aggregates in the top of the 5 µm filter was collected as the aggregate-inoculum. The separation of aggregates into different size fractions was evaluated by light microscopy. The metabolism of the aggregate-inoculum and a standard overnight planktonic inoculum was evaluated with isothermal microcalorimetry. In total, six female minipigs were allocated into three groups (n=2), receiving different inoculums. Group A: overnight planktonic inoculum; 10. 4. CFU S. aureus (S54F9), Group B: seven days old 5–15 µm aggregate-inoculum; 10. 4. CFU S. aureus (S54F9), Group C: saline. All inoculums were placed in a pre-drilled implant cavity in the right tibia of the pig and a sterile stainless-steel implant was inserted. The pigs were euthanized seven days after surgery. Postmortem macroscopic pathology, microbiology, computed tomography and histopathology were performed. Results. The separation of aggregates into different size fractions was done successfully by the filtering method. Isothermal microcalorimetry showed, a delayed Time-to-peak metabolic activity of the aggregate-inoculum compared to the planktonic inoculum. S. aureus was isolated from subcutis, bone and implants from all animals in groups A and B. Both group A animals showed osteomyelitis at gross inspection with suppuration and sequestration, while groups B and C animals had no macroscopic lesions. From CT scans, both group A animals also showed positive signs of osteomyelitis, i.e., osteolysis, while only one animal in group B did, and none in group C. Histopathological examination of the bones showed more extensive inflammation in group A animals compared to those in group B, which showed more osteoid formation. Conclusions. Formation and separation of low metabolism bacterial aggregates into different size fractions was possible. The aggregates can be used as inoculum in the porcine IAO model, with microbiological re-isolation from both implants and tissue. Furthermore, the aggregates caused a less aggressive IAO, than the planktonic counterparts. Using aggregated bacteria as inoculum appears to be more relevant to the clinical situation of infecting bacteria


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 67 - 67
22 Nov 2024
Youf R Ruth S Mannala G Zhao Y Alt V Riool M
Full Access

Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment. Method. In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, in vitro rifampicin susceptibility assays were performed (according to EUCAST). Results. The first model indicate that in vitro biofilm maturation affects the bacterial pathogenicity in the host, depending on the S. aureus strain used. Furthermore, the more the biofilm is matured, the more the rifampicin treatment efficiency is compromised. The second model shows that, despite the fast in vivo biofilm formation in the host, the number of bacteria, either attached to the surface of the K-wire surface or in surrounding tissue of the larvae, was not increased over time. Conclusions. Altogether, these results allow the establishment of biofilm models using G. mellonella larvae in order to understand the impact of biofilm maturation on both the bacterial pathogenicity and the efficiency of antibiofilm treatments


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 89 - 89
1 Dec 2019
Freischmidt H Titze N Rothhaas C Gühring T Reiter G Grützner PA Helbig L
Full Access

Aim. Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized animal studies. So far, there exists no multi-stage animal model that can be realistically transferred to the clinical situation in humans. The importance of such a model is obvious in order to be able to investigate different therapy concepts for infected and non-infected non unions. Methods. In 20 female Sprague-Dawley rats, a critical size defect by a femur osteotomy with 5 mm width was done. The periosteum at the fracture zone was cauterized proximal and distal to the osteotomy to achieve an hypovascularized situation. After randomization, 10 animals were intramedullary infected with a multisensible Staph. aureus strain (10. 3. CFU). After 5 weeks, a second surgery was performed with removing the K-wire, debridement of the osteotomy-gap and re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, by the score of Lane and Sandhu and to quantify callus formation and the mineralized area of the callus. Results. 5 weeks after the first surgery a non-union had formed in all septic and aseptic animals. According to the Lane and Sandhu score a significantly higher callus formation was found in the infected group. In all infected animals, the inoculated Staph. aureus strain was detected during the revision surgery. 8 weeks after the second surgery no bone healing could be detected in the µ-CT analysis in both groups and biomechanical testing showed a significant lower maximum torque in both groups as compared to the untreated contralateral femura. Conclusion. Here we show first results of a new two-stage pseudarthrosis animal model, which reflects a very realistic clinical situation of an infection-related non-union model. Based on this model, various therapeutic strategies in the treatment of infectious and non-infectious pseudarthrosis, such as the use of bone substitutes, can be evaluated in further studies


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 147 - 147
1 Jul 2020
Godbout C Nauth A Schemitsch EH Fung B Lad H Watts E Desjardins S Cheung KLT
Full Access

The Masquelet or induced membrane technique (IMT) is a two-stage surgical procedure used for the treatment of segmental bone defects. In this technique, the defect is first filled with a polymethyl methacrylate (PMMA) spacer, which triggers the formation of a membrane that will encapsulate the defect. During the second surgery, the spacer is carefully removed and replaced by autologous bone graft while preserving the membrane. This membrane is vascularized, contains growth factors, and provides mechanical stability to the graft, all of which are assumed to prevent graft resorption and promote bone healing. The technique is gaining in popularity and several variations have been introduced in the clinical practice. For instance, orthopaedic surgeons now often include antibiotics in the spacer to treat or prevent infection. However, the consequences of this approach on the properties of the induce membrane are not fully understood. Accordingly, in a small animal model, this study aimed to determine the impact on the induced membrane of impregnating spacers with antibiotics frequently used in the IMT. We surgically created a five-mm segmental defect in the right femur of 25 adult male Sprague Dawley rats. The bone was stabilized with a plate and screws before filling the defect with a PMMA spacer. Animals were divided into five equal groups according to the type and dose of antibiotics impregnated in the spacer: A) no antibiotic (control), B) low-dose tobramycin (1.2 g/40 g of PMMA), C) low-dose vancomycin (1 g/40 g of PMMA), D) high-dose tobramycin (3.6 g/40 g of PMMA), E) high-dose vancomycin (3 g/40 g of PMMA). The animals were euthanized three weeks after surgery and the induced membranes were collected and divided for analysis. We assessed the expression of selected genes (Alpl, Ctgf, Runx2, Tgfb1, Vegfa) within the membrane by quantitative real-time PCR. Moreover, frozen sections of the specimens were used to quantify vascularity by immunohistochemistry (CD31 antigen), proliferative cells by immunofluorescence (Ki-67 antigen), and membrane thickness. Microscopic images of the entire tissue sections were taken and analyzed using FIJI software. Finally, we measured the concentration of vascular endothelial growth factor (VEGF) in the membranes by ELISA. No significant difference was found among the groups regarding the expression of genes related to osteogenesis (Alpl, Runx2), angiogenesis (Vegfa), or synthesis of extracellular matrix (Ctgf, Tgfb1) (n = four or five). Similarly, the density of proliferative cells and blood vessels within the membrane, as well as the membrane thickness, did not vary substantially between the control, low-dose, or high-dose antibiotic groups (n = four or five). The concentration of VEGF was also not significantly influenced by the treatment received (n = four or five). The addition of tobramycin or vancomycin to the spacer, at the defined low and high doses, does not significantly alter the bioactive characteristics of the membrane. These results suggest that orthopaedic surgeons could use antibiotic-impregnated spacers for the IMT without compromising the induced membrane and potentially bone healing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 68 - 68
1 Dec 2016
Hettwer W Bischoff S Schubert H Liden E Diefenbeck M
Full Access

Aim. A gentamicin-eluting biocomposite consisting of hydroxyapatite and calcium sulfate. 1. can provide effective dead space management in chronic osteomyelitis. However, radiographic follow-up after implantation of this novel material has consistently shown evidence of several unique imaging features previously not described with other comparable bone graft substitutes. Conclusive interpretation of these newly described imaging features is difficult as long term follow-up and histological correlation is not yet available. The aim of this study was to establish a large animal model, closely simulating the clinical situation in order to permit further analysis of imaging features in correlation with histological progression of bone remodelling. Method. Standardised bone defects were created in ten Merino-wool sheep (age: two to four years). Large drill holes (diameter 2.5cm, depth 2cm, volume approx. 10ml) were placed in the medial femoral condyles of both hind legs and filled with a gentamicin antibiotic eluting bone graft substitute. *. Initially surgery was carried out on the right hind leg. Three months later, an identical intervention was performed on the contralateral side. With sacrifice planned after six or twelve months, bone voids three, six, nine and twelve months post-implantation are obtained for evaluation. The study was approved by the Animal Care Committee of Thuringia, Germany. Results. We present our preliminary radiographic results after a follow-up of six months. The bio-composite was clearly visible on all initial post-operative radiographs, showing intimate contact to the surrounding cancellous bone of the distal femur. At one month, a radio-dense ring around the bone void (the so called “halo sign”) was found in four of six bone voids treated with the biocomposite. From 2 months onwards this “halo” typically appeared to progress towards the centre of the treated defects, where spherical remnants of the composite often become increasingly apparent. This pattern has been termed “marble sign” and often appears in combination with the halo-sign. Between three to six months bone remodelling appears to continue, halo- and marble sign increasingly disappear and the composite becomes more and more indistinct from surrounding cancellous bone. Conclusions. We have established a large animal model, which appears to mimic the clinical situation very well and reproduces comparable radiographic post implantation features previously observed and described in clinical cases (including the “halo” and the “marble” sign). We expect that this model will provide valuable information regarding the correlation between histological and basic & advanced imaging features (including MRI, CT and Dexa scans) in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 10 - 10
1 Feb 2016
Tian W Liu Y Fan M Han X
Full Access

Background. The Robotic Spinal Surgery System (RSSS) is a robot system designed for pedicle screw insertion containing image based navigation system, trajectory planning system and force state recognition system. The special force state recognition system can guarantee the safety during the operation. The RSSS is helpful in pedicle screw insertion surgery and it will be applied in clinic in the near future. In this study, we evaluated the accuracy and safety of RSSS in an animal experiment. Methods. Computer tomography (CT) scan data for two anesthetised experimental sheep was acquired using the C-arm and transferred to RSSS for pre-surgery screw trajectory planning. With the assist of RSSS, we inserted 8 and 4 screws into two sheep respectively. Operation time and blood loss during the surgery were recorded, and CT scan was repeated after surgery. Real screw position and trajectory acquired by the post-surgery CT scan and ideal trajectory planned by RSSS were compared to evaluate the accuracy and safety of RSSS. The result is shown as mean±SD. Results. We planted totally 12 screws into two sheep. The operation time for each sheep is 140min and 110min, and the blood loss is 100ml and 80 ml respectively. Compared with planned trajectory, the average deviation of the entry points in lateral and axial view are 1.07±0.56mm and 1.25±0.42mm and the mean screw deviation angles in later and axial view are 1.78±0.98°and 2.52±1.03°respectively. The RSSS successfully recognised the force stages and guaranteed the safety during the drilling process. There is no penetration in all 12 pedicles, and all the screws fell into group A according to the Gertzbein-Robbins classification. Conclusion. This animal study demonstrated the accuracy and safety of the RSSS, which also supported the potential application in clinic


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 8 - 8
1 Feb 2012
Murnaghan J Li G Marsh D
Full Access

Ten percent of fractures end in delayed or non-union. NSAIDs have been linked to an inhibitory action on fracture repair for three decades yet the mechanism of action remains to be elucidated. Cancer research has identified that NSAIDs impede cell proliferation by inhibiting angiogenesis. It is proposed that a similar mechanism occurs in the induction of NSAID induced non-union. We have investigated this hypothesis in a randomised placebo control trial of the NSAID rofecoxib using a murine femoral fracture. All animals had an open femoral fracture treated using an external fixator. Outcomes measures included x-ray, histology and biomechanical testing, with laser Doppler used to assess blood flow across the fracture gap. Radiology showed similar healing patterns in both groups; however, at the later stages (day 32) the NSAID group had significantly poorer healing. Histological analysis showed that controls healed quicker (days 24 and 32), with more callus (day 8) and less fibrous tissue (Day 32). Biomechanical testing showed controls were stronger at day 32. Both groups exhibited a similar pattern of blood flow; however NSAIDs exhibited a lower median flow from day 4 onwards (significant at days 4, 16 and 24). Positive correlations were demonstrated between both histological and radiographic assessments of healing, with increasing blood flow. NSAID animals exhibited lower flows and poorer healing by all outcomes. Regression analysis demonstrates, however, that the negative effect of NSAIDs on fracture repair is independent of its inhibitory action on blood flow. COX-2 inhibitors are marketed as having cleaner side effect profiles and are widely used in trauma patients. Following development of a novel method of analysing functional vascularity across a fracture gap, we have demonstrated that the COX-2 inhibitor rofecoxib has a significant negative effect on blood flow at the fracture gap alongside inhibiting fracture repair


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 23 - 23
1 May 2016
Matsui S Majima T Mominoki K Koizumi R Kawaji H Takahashi K Takai S
Full Access

Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation. In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head. Materials and Methods. Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved. Animal experiment was performed under the rules of ethical committee of animal experiment. Average diameter of pig acetabulum was 26.3 +/− 0.6 mm. Just after sacrifice, mechanical loading using Instron testing machine with 26mm diameter of Co-Cr in right hip and Ceramic heads in left hip was performed in culture media. Ten thousand cycles of cyclic compression and rotation load (1.5kN to 0.15kN of compression and 12 degrees of rotation) to cartilage was applied at 1Hz (Figure 1). Culture media was analyzed for protein levels of inflammation related cytokines and amount of HA. Relative quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) from acetabular cartilage was performed as previously reported using specific primer sets for type II collagen, aggrecan, TNF-alpha, Interleukine-1 and 6, and MMP-1, 3, 13. Results. IL-1 beta protein level from culture media was significantly higher in Co-Cr than that in Ceramic (155+/−25.2 pg/ml vs. 86.3+/−9.6 pg/ml respectively). MMP-3 protein level had tendency to be higher in culture media from Co-Cr than that from Ceramic (16.3+/−10.6 ng/ml vs. 10.0+/−0.1 ng/ml respectively, p<0.05), however there was no significant difference. There were no significant differences of protein levels from culture media in MMP-1, IL-1a, and TNF between two groups. Amount of HA from culture media of Co-Cr group was significantly higher than that from Ceramic group (337+/−38.4 mg/ml versus 257+/−11.1 mg/ml respectively, p<0.05). Type II collagen mRNA expression was 3 times higher in Ceramic group than that in Co-Cr group. IL-1 beta mRNA expression was 4 times higher in Co-Cr group than that in Ceramic group. Other gene expression had no significant differences. Discussion. The present study showed that Co-Cr affects cartilage metabolism than Ceramic. Co-Cr group had higher protein level and mRNA expression of inflammation related cytokine, IL-1 beta, and higher HA. Concerning the mRNA expression from cartilage, type II collagen was significantly higher in Ceramic group. It has been reported that HA level is high in osteoarthritic joint. These report and our results showed that ceramic head have small detrimental effect on cartilage cell metabolism. There are limitations of the present study. Firstly, the sample size is small. Secondly, we did not evaluate synovial membrane metabolism


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 75 - 75
1 Dec 2019
Boot W Foster A Schmid T D'este M Zeiter S Eglin D Richards G Moriarty F
Full Access

Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large animal model of a two-stage revision to treat MRSA implant-associated osteomyelitis has been developed to assess novel treatments. A bioresorbable, thermo-responsive hyaluronan hydrogel (THH) loaded with antibiotics has been developed and our aim was to investigate it´s in vivo efficacy as a local antibiotic carrier compared to the current standard of care i.e. antibiotic-loaded polymethylmethacrylate (PMMA) bone cement. Method. 12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical systemic therapy to group 1. Sheep were euthanized 2 weeks following completion of antibiotic therapy. At euthanasia, soft tissue, bone, and sonicate fluid from the hardware was collected for quantitative bacteriology. Results. Sheep tolerated the surgeries and both local and systemic antibiotics well. Gold standard of care successfully treated 3/6 sheep with a total of 10/30 culture-positive samples. All 6 sheep receiving antibiotic-loaded THH were successfully treated with 0/30 culture-positive samples, p=0.0008 gold-standard vs. hydrogel (Fisher's Exact). Conclusions. The clinical gold standard treatment was successful in 50% of sheep, consistent with outcomes reported in the literature treating MRSA infection. The antibiotic-loaded THH clearly outperformed the gold standard in this model. Superior efficacy of the THH is likely due to 1) the ability to administer local antibiotics at the both revision surgies due to the bioresorbable nature of the hydrogel, and 2) complete antibiotic release compared to bone cement, which is known to retain antibiotics. Our results highlight the potential of local delivered, biodegradable systems for antibiotics for eradicating implant-related infection caused by antibiotic-resistant pathogens. Acknowledgement. Funding provided by AO Trauma


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 98 - 98
1 Dec 2017
Diefenbeck M Bischoff S Lidén E Poh P van Griensven M Hettwer W
Full Access

Aim. A gentamicin-eluting biocomposite consisting of hydroxyapatite (HA) and calcium sulphate (CaS)*1 can provide effective dead space management and bone formation in chronic osteomyelitis. However, radiographic follow-up after implantation of this biomaterial has shown imaging features previously not described with other comparable bone graft substitutes. Last year we presented preliminary results with a follow-up of 6 months. Now we present the radiographic, µCT and histological one-year follow-up of the critical-size bone defect model in sheep. The aim of this study was to simulate the clinical situation in a large animal model to correlate different imaging techniques used in the clinic (Radiography, CT and MRI scans) with histological finding. Methods. Standardised bone defects were created in ten Merino-wool sheep (age two to four years). Large drill holes (diameter 2.5cm, depth 2cm, volume approx. 10ml) were placed in the medial femoral condyles of both hind legs and filled with gentamicin-eluting biocomposite. Initially surgery was carried out on the right hind leg. Three months later, an identical intervention was performed on the contralateral side. Animals were sacrificed at three and six weeks and 4.5, six and twelve months. Radiographs and MRI scans were taken immediately after sacrifice. Filled bone voids were harvested en-block and analysed using µCT, and histology. Results. We present our radiographic, µCT and histological results after a follow-up of twelve months. The bio-composite was clearly visible on all post-operative radiographs and resorbed over the next four months following the before described pattern of “halo sign” and “marble sign”. µCT images of the “halo sign” show degradation of the biocomposite starting at its surface, with the degradation products CaS and HA carried into the periphery of the bone void. µCT images of the “marble sign” showed the further degradation of the biocomposite from the surface to its core, leaving a “marble shaped” remnant of the biocomposite behind. These remnants are completely resorbed at 4.5 months. µCT scans at twelve and six months' reveal progression of trabecula bone formation. The histological results confirm the µCT findings. Conclusion. We have established a large animal model, which mimics the clinical situation and reproduces comparable radiographic post implantation features previously observed in clinical cases (including the “halo” and the “marble” sign). Using µCT imaging and histology we can describe and understand the biodegradation process and the bone formation capacity of the biocomposite in detail. *1 CERAMENTTM|G, BONESUPPORT, Lund, Sweden. *2 CERAMENTTM|G


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 88 - 88
1 Jan 2013
Fowler A Davis T
Full Access

Historically human and animal bites to the hand have resulted in significant morbidity in relation to the high risk of contamination and subsequent infection. Our study aimed to assess the outcomes following such injuries in terms of infection requiring further intervention through specialist referral to the hand surgery team at our hospital. 124 consecutive patients attending the A&E department over a three month period in 2011 were included in this retrospective study which provided 126 separate cases due to bilateral injuries (110 animal: 16 human). Data was obtained from the electronic patient management system. The demographics of each patient were recorded followed by type of bite sustained including number and size of lacerations. 79% of patients presented within 24 hours and the majority before 6 hours from injury. The majority of the forearm bites were documented as superficial abrasions and none of these went on to develop problems with infection, so the study concentrated on bite injuries to the hand of which there were 99 cases. Most hand injuries were a single puncture or laceration (64%) but in 9 cases there were greater than 3 separate wounds. 5 cases were directly referred to the Hand surgery team with 4 requiring admission and of these 3 required washout and debdridement in theatres. The remaining 94 cases were managed solely by A&E. Of these 94 cases 87 pts received Abx and 78 pts had a lavage. Overall 68% received both Abx and lavage. Subsequent to discharge from A&E only 3 developed problems with infection later (2 requiring specialist input) they were all dog bites and in keeping with the ‘typical’ bite pattern seen in other pts. The study concluded that bites not involving joint, tendon or bone have only a small chance of causing infection provided good initial treatment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2016
Camillieri G Di Salvatore M Mancò A
Full Access

Transverse pin femoral fixation of bone-patella tendon-bone (BPTB) in ACL reconstruction has been widely applied during the last decades. Aim of our study is to confront two different system of transverse femoral fixation for BPTB graft: Transfix BTB (Arthrex) and BioTransfix T3 (Arthrex). The main differences between these two system are the diameter (3.0 mm Transfix BTB and 3.5 mm BioTransfix T3), and section (Transfix BTB is cannulated). Surgical technique adopts the same transverse vectorial guide but different guide sleeves. 30 fresh-frozen porcine knees (mean age 2.2 years) were assigned to the two groups randomisedly. the patellar bone block and tendon were harvested using the same size in all specimens (10mm × 25 mm, 10 mm). Zwick-Roell z010 tension/compression device with bone clamps, was used for the study:. Cyclic test (1000 cycles, 0.5 Hz, 50–250 N/cycle, 100 cycles of preload). Final pull-out test (1 mm/s). Failure analysis. CT scan and densitometry. Any implant didn't fail during cyclic test. The elongation average was 1.85±0.63 for Transfix BTB and 1.69±0.87 for BioTransfix T3. Pull-out test showed very similar values in terms of Ultimate Strength Failure (USF), Stiffness at USF, and Stiffness:. The failure mode was bone plug fracture (12 for Transfix BTB and 13 for BioTransfix T3) and tendon failure (3 for Transfix BTB and 2 for BioTransfix T3). The post-test CT scan showed any failure of the fixation devices and the correct position inside the femoral half-tunnel. The mean bone density of porcine femora was comparable to young human femora (1.12±0.31 BMD). Both systems showed a similar behaviour in terms of USF, Stiffness, Cyclic load, method of failure and other biomechanical parameters. The reproducibility of surgical technique, the mechanical strength and endurance of the systems suggest two valid options for ACL reconstruction with BPTB even if in-vivo studies are necessary to confirm the animal ex-vivo biomechanical data


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 32 - 32
1 Sep 2012
Whyne CM Leckie A Akens M Woodhouse K Yee A
Full Access

Purpose. Nucleus pulposus (NP) replacements represent a less invasive alternative for treatment of early stage degenerative disc disease (DDD). Hydrogel based NP replacements are of particular interest as they can be injected/implanted using minimally invasive surgical (MIS) techniques to re-establish mechanical integrity and as a scaffold for regeneration. A thiol-modified hyaluronan elastin-like polypeptide (TMHA/EP) hydrogel crosslinked using polyethylene diacrylate has shown promise as a potential NP replacement for DDD in vitro. This study aims to assess the mechanical properties of this hydrogel when injected into an induced early stage DDD porcine model and to determine the optimal injection method for delivery. It is hypothesized that minimally invasive injection of the TMHA/EP material can restore mechanical behaviour of spinal motion segments in early stage DDD. Method. Intervertebral disc (IVD) degeneration was enzymatically induced in L2-L3 and L4-L5 lumbar levels in 10 Yorkshire boars using chondroitinase ABC (n=20 discs). An additional three animals served as healthy controls (n=6 discs). Following a four-week degradation period, the TMHA/EP solution (250microL in a 3:1 weight ratio) was injected into the degenerate NP of 16 discs by one of two MIS techniques: A direct 18G needle injection or a modified kyphoplasty technique (MKT) in which a balloon angiocatheter was inserted through an 11G trocar into the IVD and inflated to create a cavitary defect that was then filled with the hydrogel. Excised motion segments were tested in axial compression under a load of 400N and in axial rotation (AR), lateral bending (LB) and flexion/extension (FE) at 5Nm. Range of motion (ROM), neutral zone (NZ) length, NZ stiffness (NZStiff) and axial compressive stiffness (ACStiff) were quantified. Results. The degenerate control motion segments were, in general, found to be significantly less stiff and more flexible than the healthy controls. In comparison to the degenerate controls, direct injection of TMHA/EP demonstrated increased ACStiff and AR NZStiff (23%, 77%; p<0.05) and the MKT yielded a significant increase in AR NZStiff (88%) with a trend towards increased FE NZStiff (253%, p=0.089). Following TMHA/EP augmentation, direct injection and MKT treated IVDs demonstrated similar stiffness to healthy intact controls (p=0.519–1.000). Both ROM and NZ length in AR significantly increased following degeneration of the IVDs as compared to healthy controls (49%, 63%) In comparison to degenerate controls, both MIS techniques showed similar significant decreases in AR ROM (32%, 33%) and AR NZ length (35%, 32%). Both injection methods worked to restore motion to levels similar to healthy controls (p=0.173–1.00). Differences were not detected between the two treatment groups for all outcome variables (p=0.115–0.916). Conclusion. This study demonstrated the ability of the TMHA/EP composite to restore initial biomechanical function in early stage DDD independent of the MIS technique


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 137 - 137
1 Sep 2012
Duffy PJ Gray A Powell J Mitchell J Tyberg J
Full Access

Purpose. There are concerns with regard to the physiological effects of reamed intramedullary femoral fracture stabilisation in patients who have received a pulmonary injury. This large animal study used invasive monitoring techniques to obtain sensitive cardiopulmonary measurements and compared the responses to Early Total Care (reamed intramedullary femoral fracture fixation) to Damage Control Orthopaedics (external fixation), after the induction of acute lung injury. We hypothesised a greater cardiopulmonary response to intramedullary fracture fixation. Method. Acute lung injury (PaO2/FiO2 < 200 mmHg) was induced in 12 invasively monitored and terminally anaesthetised male sheep via the infusion of oleic acid into the right atrium. Each animal underwent surgical femoral osteotomy and fixation with either reamed intramedullary (n=6) or external fixation (n=6). Simultaneous haemodynamic and arterial blood-gas measurements were recorded at baseline and at 5, 30 and 60 minutes after fracture stabilisation. Results. The mean (S.E.) PaO2/FiO2 fell significantly (p<0.05) from 359(37) to 107 (23) and 382 (33) to 128 (18) in the externally fixated and intramedullary nailed groups respectively as a result of the acute lung injury. The further combined effect of surgical osteotomy and subsequent fracture fixation produced a mean (+/− S.E.) PaO2/FiO2 of 114 (21) and 113 (12), in the externally fixated and intramedullary nailed groups respectively, immediately after surgery. This was not significantly different either within or between groups. Similarly the pulmonary vascular resistance (PVR) measured at 4.7 (0.9) and 4.2 (0.5) in the externally fixated and intramedullary nailed groups respectively after lung injury changed to 4.9 (0.7) and 4.3 (0.6) after surgical osteotomy and subsequent fracture fixation which, again was not significantly different either within or between groups. No significant difference in either PaO2/FiO2 or PVR was detected at the monitored 5, 30 and 60 minute intervals that followed fracture stabilisation. Conclusion. Against a background of standardised acute lung injury, there appeared to be no further deterioration produced by the method of isolated femoral fracture fixation in two sensitive physiological parameters commonly used by intensive care physicians


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 14 - 14
1 Mar 2013
Bayes G Venter M Lukhele M
Full Access

Purpose

Adipose derived stem cells have been shown to enhance both wound and bone healing. The stem cells are harvested, purified, cultured and the viability assessed in order to provide adequate cellular yield. The isolation process requires trained laboratory staff, intensive procedures utilizing multiple purification solutions and expensive equipment for culturing and interpretation of viability of the isolated stem cells.

The aim of the study was to investigate the effect of simple lipo-aspirate on wound and bone healing.

Methodology

This is a prospective, interventional study to investigate the effect of adipocyte extract on wound and bone healing. 9 Young, healthy, large white female pigs were used in the study. Fat was harvested using standard liposuction technique and injected around the defects created. Skin defects were evaluated for secondary wound healing macroscopically and histologically. 3 pigs were used in a pilot study to evaluate the possibility of investigating the effects of lipo-aspirate in bone defects.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 215 - 215
1 Dec 2013
Abdulkarim A Elsibaei A Jackson B Riordan D
Full Access

Introduction

Many surgeons are familiar with the audible change in the sound pitch while hammering a rasp in a long bone during surgeries like Hip Arthroplasty. We have developed a hypothesis indicating that there is a relationship between that sound change and the development of micro-fracture and subsequently full fracture.

Methods

An experiment using porcine femur bone performed by attaching a bone conduction microphone to the distal part of the bone while hammering a rasps of different sizes through the medullary canal till the point where a fracture developed. The transduce sound resonances created in the bone during rasping are converted to an analogue electrical signals that were sent to a Zoom H4n handheld recording device which recorded the signal to a disk.

The recorded signals subsequently were analysed using Matlab software and a spectrum analyzer using Fast Fourier Transforms (FFT).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 65 - 65
1 Jan 2016
Camillieri G Calvisi V
Full Access

Self-locking button-like fixation devices for ACL reconstruction are attracting knee surgeons' attention due to promising technical advantages: complete filling of the tunnel with graft, anatomic reconstruction (AM portal), fixation achievement even when a short tunnel is reamed, opportunity of graft re-tensioning after tibial fixation and/or cyclic load. We compared two similar devices (TightRope vs ToggleLocZL)

20 fresh-frozen porcine femurs (mean age 2.1 years) were assigned to the two groups by randomization. Hamstrings with 9 mm of diameter were obtained using bovine tendons that show the same biomechanic behaviour of human hamstrings. Femoral tunnel was created by AM portal technique (anatomic position). Zwick-Roell z010 tension/compression device with bone and tendon clamps, was used for the study:

Cyclic test (1000 cycles, 0.5 Hz, 50–250 N/cycle, 50 cycles of preload at 10–80 N/cycle)

Final pull-out test (1 mm/s)

Failure analysis

CT scan and densitometry

Any implant didn't fail during cyclic test. The elongation average was 2.85±1.63 for ToggleLoc and 2.71±.85 for TightRope (P>0.05). Pull-out test showed different values in terms of Ultimate Strength Failure (USF), Stiffness at USF, and Stiffness:

The failure mode was:

The mean method of failure was the fracture of the cortical bone of the femoral condyle, for both groups. But if we extrapolate the USF the difference was favourable(P<0.05) for TightRope (707.83 N) than ToggleLoc (580.16).

The mean bone density of porcine femora was comparable to young human femora (1.12±0.31 BMD)

The reproducibility of surgical technique, the mechanical strength and endurance of the systems suggest two valid options for ACL reconstruction with hamstring. ToggleLoc showed worse results due to the sharp squared edges of the button.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 60 - 60
1 Mar 2013
Esposito C Oliver R Campbell P Walter WK Walter WL Walsh W
Full Access

In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an in vivo model for investigation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 78 - 78
24 Nov 2023
Bernaus M Carmona F De Espinosa Vázquez de Sola JML Valentí A Abizanda G Cabodevilla AR Torres D Calero JA Font L Del Pozo JL
Full Access

Aim. To provide proof of concept in an in vivo animal model for the prevention of prosthetic joint infection prevention using electric fields along with conventional antibiotic prophylaxis. Corresponding Author: Marti Bernaus. Method. First, we standardized the animal model to simulate implant contamination during the surgical procedure. We then implanted cobalt-chrome prostheses adapted to both knees of two New Zealand White rabbits, under standard aseptic measures and antibiotic prophylaxis with cefazolin. Prior to implantation, we immersed the prostheses in a 0.3 McFarland inoculum of S. aureus (ATCC 25923) for 30 seconds. In the first animal (control), the joint was directly closed after washing with saline. In the second animal (case), both prostheses were treated with electric current pulses for 30 seconds, washed with saline, and the joint was closed. After 72 hours, both animals were reoperated for the collection of periprosthetic tissue and bone samples, and prosthesis removal. In all samples, we performed quantitative cultures prior to vortexing and sonication, as well as prolonged cultures of the sonication broth. We confirmed the absence of contamination by identification with MALDI-TOF (VITEK-MS) and automated antibiotic susceptibility testing of the isolated colonies (VITEK-2). Results. In the “control” animal, we isolated S. aureus in all studied samples. The bacterial count expressed as log10 (cfu/cm2) in the prostheses of the right and left legs was 9.38 and 8.86, respectively. The bacterial count expressed as log10 (cfu/mL) in bone and periprosthetic tissue biopsies was 2.70 and 2.72 in the right leg and 3.24 and 3.87 in the left leg, respectively. In the “case” animal, where an electric field was applied to the implant after placement in addition to cefazolin prophylaxis, all samples (prosthesis, bone, and periprosthetic tissue) were negative, and no isolation of the inoculated strain of S. aureus was obtained after incubation of the sonication broth for 14 days. Conclusions. This in vivo model suggests the potential effectiveness of applying an electric field to a prosthetic implant in combination with cefazolin for the prevention of PJI development, after exposure of the implant to an inoculum of S. aureus (ATCC 25923). Our findings need to be confirmed using a larger sample size