Advertisement for orthosearch.org.uk
Results 1 - 20 of 28
Results per page:
Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368–385


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims. The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Methods. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted. Results. A total of 30 studies were included, of which six studies used rats and 24 studies used mice. Osteoporosis or bone loss was induced in 14 studies. Interventions included ten with probiotics, three with prebiotics, nine with antibiotics, two with short-chain fatty acid (SCFA), six with vitamins and proteins, two with traditional Chinese medicine (TCM), and one with neuropeptide Y1R antagonist. In general, probiotics, prebiotics, nutritional interventions, and TCM were found to reverse the GM dysbiosis and rescue bone loss. Conclusion. Despite the positive therapeutic effect of probiotics, prebiotics, and nutritional or pharmaceutical interventions on osteoporosis, there is still a critical knowledge gap regarding the role of GM in rescuing bone loss and its related pathways. Cite this article: Bone Joint Res 2021;10(1):51–59


Bone & Joint Research
Vol. 6, Issue 12 | Pages 656 - 664
1 Dec 2017
Morita W Dakin SG Snelling SJB Carr AJ

Objectives. Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. Methods. We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included. Results. IL-1β, IL-6, IL-10, and TNF-α are the cytokines that have been most frequently investigated. In clinical samples of tendinopathy and tendon tears, the expression of TNF-α tended not to change but IL-6 increased in tears. Healthy human tendons showed increased IL-6 expression after exercise; however, IL-10 remained unchanged. Animal tendon injury models showed that IL-1β, IL-6, and TNF-α tend to increase from the early phase of tendon healing. In animal exercise studies, IL-1β expression showed a tendency to increase at the early stage after exercise, but IL-10 expression remained unchanged with exercise. Conclusions. This review highlights the roles of IL-1β, IL-6, IL-10, and TNF-α in the development of tendon disease, during tendon healing, and in response to exercise. However, there is evidence accumulating that suggests that other cytokines are also contributing to tendon inflammatory processes. Further work with hypothesis-free methods is warranted in order to identify the key cytokines, with subsequent mechanistic and interaction studies to elucidate their roles in tendon disease development. Cite this article: W. Morita, S. G. Dakin, S. J. B. Snelling, A. J. Carr. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims. The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR. . Materials and Methods. In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies). . Results. Seven categories of biological interventions were identified: growth factors, biomaterials, stem cells, gene therapy, autologous tissue, biophysical/environmental, and pharmaceuticals. The methodological quality of animal studies was moderate in 97%, but only 10% used clinically relevant outcome measures. The most interventions in clinical trials target the graft-tunnel interface and are applied intraoperatively. Platelet-rich plasma is the most studied intervention, but the clinical outcomes are mixed, and the methodological quality of studies was suboptimal. Other biological therapies investigated in clinical trials include: remnant-augmented ACLR; bone substitutes; calcium phosphate-hybridized grafts; extracorporeal shockwave therapy; and adult autologus non-cultivated stem cells. Conclusion. There is extensive preclinical research supporting the use of biological therapies to augment ACLR. Further clinical studies that meet the minimum standards of reporting are required to determine whether emerging biological strategies will provide tangible benefits in patients undergoing ACLR. Cite this article: Bone Joint J 2018;100-B:271–84


Bone & Joint Research
Vol. 13, Issue 12 | Pages 750 - 763
11 Dec 2024
Xie C Gong J Zheng C Zhang J Gao J Tian C Guo X Dai S Gao T

Aims

This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.

Methods

The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1044 - 1049
1 Oct 2024
Abelleyra Lastoria DA Ogbolu C Olatigbe O Beni R Iftikhar A Hing CB

Aims

To determine whether obesity and malnutrition have a synergistic effect on outcomes from skeletal trauma or elective orthopaedic surgery.

Methods

Electronic databases including MEDLINE, Global Health, Embase, Web of Science, ScienceDirect, and PEDRo were searched up to 14 April 2024, as well as conference proceedings and the reference lists of included studies. Studies were appraised using tools according to study design, including the Oxford Levels of Evidence, the Institute of Health Economics case series quality appraisal checklist, and the CLARITY checklist for cohort studies. Studies were eligible if they reported the effects of combined malnutrition and obesity on outcomes from skeletal trauma or elective orthopaedic surgery.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 138 - 146
14 Feb 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims

Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on trauma infrastructures. This study aims to identify what, and how, outcomes have been reported for people following open lower limb fracture over ten years.

Methods

Systematic literature searches identified all clinical studies reporting outcomes for adults following open lower limb fracture between January 2009 and July 2019. All outcomes and outcome measurement instruments were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using an outcome taxonomy.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 121 - 127
1 Feb 2024
Filtes P Sobol K Lin C Anil U Roberts T Pargas-Colina C Castañeda P

Aims

Perthes' disease (PD) is a relatively rare syndrome of idiopathic osteonecrosis of the proximal femoral epiphysis. Treatment for Perthes' disease is controversial due to the many options available, with no clear superiority of one treatment over another. Despite having few evidence-based approaches, many patients with Perthes' disease are managed surgically. Positive outcome reporting, defined as reporting a study variable producing statistically significant positive (beneficial) results, is a phenomenon that can be considered a proxy for the strength of science. This study aims to conduct a systematic literature review with the hypothesis that positive outcome reporting is frequent in studies on the treatment of Perthes' disease.

Methods

We conducted a systematic review of all available abstracts associated with manuscripts in English or with English translation between January 2000 and December 2021, dealing with the treatment of Perthes' disease. Data collection included various study characteristics, surgical versus non-surgical management, treatment modality, mean follow-up time, analysis methods, and clinical recommendations.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 857 - 863
1 Aug 2023
Morgan C Li L Kasetti PR Varma R Liddle AD

Aims

As an increasing number of female surgeons are choosing orthopaedics, it is important to recognize the impact of pregnancy within this cohort. The aim of this review was to examine common themes and data surrounding pregnancy, parenthood, and fertility within orthopaedics.

Methods

A systematic review was conducted by searching Medline, Emcare, Embase, PsycINFO, OrthoSearch, and the Cochrane Library in November 2022. The Preferred Reporting Items for Systematic Reviews and Meta Analysis were adhered to. Original research papers that focused on pregnancy and/or parenthood within orthopaedic surgery were included for review.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims

Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.

Methods

A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 646 - 655
1 Jul 2024
Longo UG Gulotta LV De Salvatore S Lalli A Bandini B Giannarelli D Denaro V

Aims

Proximal humeral fractures are the third most common fracture among the elderly. Complications associated with fixation include screw perforation, varus collapse, and avascular necrosis of the humeral head. To address these challenges, various augmentation techniques to increase medial column support have been developed. There are currently no recent studies that definitively establish the superiority of augmented fixation over non-augmented implants in the surgical treatment of proximal humeral fractures. The aim of this systematic review and meta-analysis was to compare the outcomes of patients who underwent locking-plate fixation with cement augmentation or bone-graft augmentation versus those who underwent locking-plate fixation without augmentation for proximal humeral fractures.

Methods

The search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Articles involving patients with complex proximal humeral fractures treated using open reduction with locking-plate fixation, with or without augmentation, were considered. A meta-analysis of comparative studies comparing locking-plate fixation with cement augmentation or with bone-graft augmentation versus locking-plate fixation without augmentation was performed.


Bone & Joint Open
Vol. 3, Issue 7 | Pages 582 - 588
1 Jul 2022
Hodel S Selman F Mania S Maurer SM Laux CJ Farshad M

Aims

Preprint servers allow authors to publish full-text manuscripts or interim findings prior to undergoing peer review. Several preprint servers have extended their services to biological sciences, clinical research, and medicine. The purpose of this study was to systematically identify and analyze all articles related to Trauma & Orthopaedic (T&O) surgery published in five medical preprint servers, and to investigate the factors that influence the subsequent rate of publication in a peer-reviewed journal.

Methods

All preprints covering T&O surgery were systematically searched in five medical preprint servers (medRxiv, OSF Preprints, Preprints.org, PeerJ, and Research Square) and subsequently identified after a minimum of 12 months by searching for the title, keywords, and corresponding author in Google Scholar, PubMed, Scopus, Embase, Cochrane, and the Web of Science. Subsequent publication of a work was defined as publication in a peer-reviewed indexed journal. The rate of publication and time to peer-reviewed publication were assessed. Differences in definitive publication rates of preprints according to geographical origin and level of evidence were analyzed.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 541 - 548
1 May 2022
Zhang J Ng N Scott CEH Blyth MJG Haddad FS Macpherson GJ Patton JT Clement ND

Aims

This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA).

Methods

Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-­Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1745 - 1753
1 Dec 2021
Walinga AB Stornebrink T Langerhuizen DWG Struijs PAA Kerkhoffs GMMJ Janssen SJ

Aims

This study aimed to answer two questions: what are the best diagnostic methods for diagnosing bacterial arthritis of a native joint?; and what are the most commonly used definitions for bacterial arthritis of a native joint?

Methods

We performed a search of PubMed, Embase, and Cochrane libraries for relevant studies published between January 1980 and April 2020. Of 3,209 identified studies, we included 27 after full screening. Sensitivity, specificity, area under the curve, and Youden index of diagnostic tests were extracted from included studies. We grouped test characteristics per diagnostic modality. We extracted the definitions used to establish a definitive diagnosis of bacterial arthritis of a native joint per study.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1021 - 1030
1 Jun 2021
Liu X Dai T Li B Li C Zheng Z Liu Y

Aims

The aim of this meta-analysis was to assess the prognosis after early functional rehabilitation or traditional immobilization in patients who underwent operative or nonoperative treatment for rupture of the Achilles tendon.

Methods

PubMed, Embase, Web of Science, and Cochrane Library were searched for randomized controlled trials (RCTs) from their inception to 3 June 2020, using keywords related to rupture of the Achilles tendon and rehabilitation. Data extraction was undertaken by independent reviewers and subgroup analyses were performed based on the form of treatment. Risk ratios (RRs) and weighted mean differences (WMDs) (with 95% confidence intervals (CIs)) were used as summary association measures.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.